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We study the dynamic phase diagram of a spin model associated with the number partitioning problem, as
a function of temperature and of the fractionK /N of spins allowed to flip simultaneously. The caseK=1
reproduces the activated behavior of Bouchaud’s trap model, whereas the opposite limitK=N can be mapped
onto the entropic trap model proposed by Barrat and Mézard. In the intermediate case 1!K!N, the dynamics
corresponds to a modified version of the Barrat and Mézard model, which includes a slow(rather than
instantaneous) decorrelation at each step. A transition from an activated regime to an entropic one is observed
at temperatureTg/2 in agreement with recent work on this model. Ergodicity breaking occurs forT,Tg/2 in
the thermodynamic limit, ifK /N→0. In this temperature range, the model exhibits a nontrivial fluctuation-
dissipation relation leading forK!N to a single effective temperature equal toTg/2. These results give
insights into the relevance and limitations of the picture proposed by simple trap models.
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I. INTRODUCTION

An important step toward the understanding of glassy dy-
namics[1] has been made when it was recognized that some
generic properties of configuration space—or phase space—
could be responsible for the dramatic slowing down of the
dynamics [2–5]. In particular, the geometric structure of
phase space leads schematically to two different kinds of
dynamics: an “activated” dynamics in which the system is
trapped in local minima by significant energy barriers, and an
“entropic” dynamics which results from a decreasing number
of downward directions when visiting saddles in configura-
tion space[6–11]. In this latter case, the system spends most
of its time wandering in search of these rare paths which
would allow it to decrease its energy.

A popular and qualitative description of these glassy be-
haviors has been proposed in the past decade in terms of trap
models, in which a very simplified phase space dynamics
takes place. In these models, any state can be reached from
any other through a single transition, disregarding any non-
trivial structure related to the finite dimensionality of real
space. Such models actually focus on the distribution of low
energy states, often assumed to be exponential, which can be
justified on the basis of extreme statistics[12].

Depending on the specific choice of the transition rates,
one can build an activated dynamics—as in Bouchaud’s trap
model(BTM) [13–15]—or an entropic one—as in the Barrat
and Mézard model(BMM ) [16,17]. Considering a finite size
BMM, or introducing by hand a threshold level, one can
observe a crossover from an entropic to an activated regime
[17]. Intuitively, such a crossover means that the system is no
longer able to find downward directions since it has reached
the bottom of the “valley.” Further evolution can proceed
only by crossing energy barriers.

In spite of the conceptual interest of these models, it
seems rather difficult to find microscopic models(i.e., mod-
els in which microscopic degrees of freedom are explicitly
described) where a reasonably clear mapping to such trap

models can be proposed. This situation is particularly strik-
ing since the physical interpretation of trap models looks
quite clear, but arguments usually fail to go beyond a quali-
tative level.

The first explicit(and mathematically rigorous) mapping
[18] was proposed between thefinite sizerandom energy
model [19] and the BTM. Trap mechanism has also been
shown to be a tangible description of supercooled liquids
slowing down when considering the distribution of the en-
ergy associated with the inherent structures[20]. On the
other hand, it has been proposed recently[21] to use a modi-
fied version of the number partitioning problem(NPP),
mapped onto a fully connected spin model with a one-spin-
flip dynamics, to illustrate how an activated behavior typical
of the BTM arises from a microscopic dynamics.

In the present paper, we discuss the influence of the
choice of the dynamics on the behavior of the NPP. We show
in particular that varying the number of spins that can be
flipped simultaneously allows us to recover most of the phe-
nomenology of glass theory, namely, transitions between en-
tropic and activated behavior, nonlinear as well as linear
(with nontrivial slope) fluctuation-dissipation relations
(FDR’s), and ergodicity breaking. Conversely, these micro-
scopic realizations allow us to shed some light on the inter-
pretation, as well as limitations, of simple phase space mod-
els like the BTM and the BMM.

The paper is organized as follows: Sec. II introduces the
NPP model, and Sec. III describes the basic mappings onto
the usual trap models for some specific dynamical rules. In
Sec. IV, we introduce more general dynamical rules, and
study the behavior of the model, emphasizing the entropic-
to-activated transitions as well as relations to trap models. In
Sec. V, the FDR is studied and shown to be linear in a par-
ticular limit, with a nontrivial slope. Finally, we discuss in
Sec. VI the interpretation of this linear FDR, as well as the
influence of the energy density on the transition between
entropic and activated regimes.
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II. OPTIMIZATION AND SPIN MODEL

The optimization problem of the unconstrained NPP, de-
scribed by a cost function, can be mapped onto a fully con-
nected spin model with a disordered Hamiltonian[24–26].
By suitably choosing the cost function and the dynamics, this
spin model can be given a glassy behavior which resembles
closely that of the BTM[21]. Given a set ofN random real
numbersa1,a2, . . . ,aN uniformly drawn from the interval[0,
1], the original NPP consists of finding the optimum configu-
ration hsiji=1,. . .,N

opt , wheresi = ±1 are Ising spins, which mini-
mizes the following cost function:

Em = Uo
i=1

N

aisiU . s1d

This is equivalent to finding a partition of the sethaij into
two subsetsS1 andS2 such that the sums of theai’s within
each subset are as close as possible. In terms of spin systems,
this problem corresponds without loss of generality to a
Mattis-like HamiltonianEMattis=Em

2 describing an antiferro-
magnetic spin glass with factorized couplings:

EMattis = o
i,j

aiajsisj . s2d

The gauge transformationsi ;aisi casts this Hamiltonian
into a mean field antiferromagnetic Ising model for which
thermodynamical properties can be exactly derived[22]. In
this sense, this model is the antiferromagnetic counterpart of
the Mattis spin model[23].

From a thermodynamic point of view, Mertens[24,25]
has shown that the ground state of the Hamiltonian(1) was
kEm0

l=Î2
3pN2−N. Interestingly, from such a Hamiltonian,

one can derive a new cost function, i.e., a new energy, that
has an extensive ground state:

E = Tg lnsEmd = Tg lnUo
i=1

N

aisiU s3d

where Tg fixes the energy scale; from now on the ground
state scales likekE0l,−NTg ln 2. In this paper, we consider
the study of a system defined by such a Hamiltonian.

In this system, the energiesE,k ln N (wherek is some
positive constant) are independent random variables[21,24]
that are distributed according to(assumingN@1)

rsEd = N expSbgE −
1

2s2N
exps2bgEdD s4d

with N=2bg/Î2ps2N, and bg=Tg
−1. The essential property

of this distributionrsEd is that it has an exponential tail for
E→−`. Such a tail is usually the key ingredient to obtain a
glass transition at finite temperature.

Using Derrida’s microcanonical argument for the random
energy model(REM) [19], a thermodynamic transition is
expected at temperatureTg, below which the system is frozen
in a limited number of states surrounding the ground state, so
that the entropy(density) vanishes.

The glass transition in the present model resembles the
standard REM transition, the only difference being that the

former is first order whereas the latter is second order
[12,21]. This difference is due to the shape of the distribution
of low energy states, which is Gaussian in the standard REM,
and exponential in the present NPP model. However, this
difference in the thermodynamic nature of the glass transi-
tion does not affect the aging properties of the two models,
which are indeed very similar[18,21], since the Gaussian
distribution of the REM can be well approximated by an
exponential distribution in the energy range visited during
aging[12]. In addition, an important property shared by both
models is that for low energy states magnetization and en-
ergy become decorrelated.

From an optimization point of view, many interesting
questions are inherent to the NP-hard nature of the NPP
[24,27]. Thus, it is interesting to study, whenT,Tg, how the
system(3) approaches the ground state depending on the
local dynamical laws, given the prescription of detailed bal-
ance. Since the NPP belongs to the class of NP-complete
problems, the time needed for any algorithm to get the per-
fect partition is exponential in the system sizeN. The most
naive algorithm which consists of an exhaustive enumeration
of all the partitions is then as efficient as any elaborated
algorithm whenN becomes large[25]. Subsequently, even
though the dynamics studied in this paper seemsa priori to
be inappropriate to the optimization problem, all the under-
lying mechanisms responsible for out-of-equilibrium pro-
cesses, especially aging phenomena, come from the NP-hard
nature of the problem.

So belowTg any dynamical rules(satisfying detailed bal-
ance) lead to an aging regime before reaching the ground
state. In the following, we useK-spin-flip Metropolis rules
s1øKøNd defined as follows. At each Monte Carlo time
step, a new configurationhsi8j is obtained fromhsij in the
following way: K spins are chosen randomly, and each of
theseK spins is flipped with probability12. This new configu-
ration is then accepted with a probability equal to the Me-
tropolis acceptance rates at temperatureT:

Wshsij → hsi8jd =He−sE8−Ed/T if E8 . E,

1 if E8 ø E,
J s5d

T being the temperature of the thermal bath. Monte Carlo
time steps are separated by a physical time intervaltMC
=K /N in the natural time units of the system. This ensures
that each spin keeps a probability of the order of 1 to be
chosen within a unit time interval, even in the thermody-
namic limit.

We show in the following that this model leads to a rich
dynamic phase diagram, the control parameter being the
fraction K /N of spins allowed to flip simultaneously. This
phase diagram can be discussed in light of both the BMM
and BTM studies at finite temperature.

III. SIMPLE REALIZATIONS OF TRAP MODELS

In this section, we study two different dynamical rules: a
single-spin-flip dynamicssK=1d and a global dynamics in-
volving full rearrangementsK=Nd. Interestingly, these two
limiting cases appear to be microscopic realizations of trap
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models, the former with an activated behavior and the latter
with an entropic one.

A. Single-spin-flip dynamics: Activated traps

It has been shown recently[21] that a single-spin-flip dy-
namics naturally leads to an activated trap behavior like that
of Bouchaud, in which the aging phenomenon comes from
the divergence of the average trapping time. Given the den-
sity of states(4) with an exponential tail, two dynamical
ingredients are responsible for such a behavior: on the one
hand, the existence of a horizon level below which the sys-
tem has no choice but to reemerge above it so as to continue
its evolution; on the other hand, instantaneous jumps into a
randomly chosen new trap after reemerging at the horizon
level, associated with a full decorrelation.

The former appears naturally, since when the energy is
lower than

Eh = Tg lnsamind < − Tg ln N s6d

with amin;minsa1, . . . ,aNd=Os1/Nd, a single spin flip nec-
essarily leads to a state whose energy is greater thanEh. The
latter is due to the combination of two properties. First, low
energy states are totally uncorrelated; second, at large times,
the time spent around the horizon level during a transition
between low energy states becomes negligible with respect
to the trapping time in these deep states.

Interestingly, the need for reorganization around high en-
ergy levels in order to go from one low energy state to an-
other is responsible for an equilibriumlike linear FDR with
slope 1/T for smooth observables, i.e., observables like the
magnetization whose relative variation is of the order of 1/N
after one spin flip—see Fig. 1 for a schematic view. Note that
this law is observed even in the aging regime. This comes
from the fact that the evolution of smooth observables is
dominated by the sojourns among high energy states, where
they can(almost) equilibrate. Once in a deep state, these
observables become frozen, but their typical value is indeed
that given by the Gibbs distribution, since it is determined by
the high energy states visited just before falling into the trap.

B. N-spin-flip dynamics and BMM behavior

Let us consider now a global dynamics(i.e., K=N) such
that all spins are flipped randomly(and simultaneously) at
each step in order to find a new configuration. The transition
is then accepted or rejected according to the Metropolis rates
given in Eq. (5). As a result, any configuration isa priori
accessible from any other(apart from the energetic con-
straint), which means that the horizon level disappears, and
the new configuration is in general completely decorrelated
from the old one. As, moreover, energies are distributed ex-
ponentially, one can expect this model to be a microscopic
realization of the BMM. In the following, we propose more
quantitative arguments as well as numerical simulations to
support this statement.

In all the numerical simulations, we have dealt with the
autocorrelation functionCstw,tw+ td between timetw and tw
+ t defined by the average over the thermal histories of the
history-dependent correlation functionCsinglestw,tw+ td:

Cstw,tw + td = kCsinglestw,tw + tdl s7d

with

Csinglestw,tw + td =
1

N
o
i=1

N

sistwdsistw + td. s8d

This choice of correlation is usual in spin models, although
other choices like the autocorrelation of the magnetization
would be possible. Actually,Cstw,tw+ td is the autocorrela-
tion of the observableoijisi, whereji = ±1 are quenched ran-
dom variables. We show in the Appendix that the specific
choice of the observable does not influence the main proper-
ties of the model, as long as the observable is smooth.

In the case of a full redistribution of the spins, this auto-
correlation reduces to the hopping correlation function
CHstw,tw+ td, defined by the following history-dependent
function:

Csingle
H stw,tw + td = H1 if sistw + td = sistwd ∀ i ,

0 otherwise,
J s9d

which precisely leads to the same correlation as in trap mod-
els. The aging regime is characterized by the fact that the
correlation functionCstw,tw+ td becomes a functionCst / twd
of the ratiot / tw only. For trap models with exponential en-
ergy distributions, the asymptotic behavior of the function
Cst / twd for t! tw and for t@ tw is characteristic of the nature
(entropic or activated) of the dynamics[17]. In the NPP,
numerical data show that(full ) aging is observed for any
temperatureT,Tg as expected(see Fig. 2 forT=0.75Tg).

In the long time limit st@ twd, the asymptotic behavior
characteristic of the BMM, with a temperature-independent
exponent, is recovered(Fig. 2):

Cstw,tw + td ,
tw
t

. s10d

Actually, one can be more specific and compute the exact
asymptotic expression of the correlation function in the case
of Metropolis rates. One findsCstw,tw+ td<s1−mdtw/ t,
wherem=T/Tg is the reduced temperature. This prediction

FIG. 1. Schematic representation of the phase space structure of
the NPP model with single-spin-flip dynamics. The horizon level
separates surface states and low energy states. An observable is
smooth if it varies slowly between neighboring states.
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fits well the numerical data, as shown on Fig. 2.
In the short time limitst! twd, an asymptotic analysis of

the correlation function in the BMM shows the onset of a
singularity for temperatures in the rangeTg/2,T,Tg:

1 − Cstw,tw + td , 5S
t

tw
Ds1−md/m

,
1

2
, m , 1,

t

tw
, m ,

1

2
. 6 s11d

More precisely, the singularity concerns the scaling function
Csud in the limit u→0. This singularity clearly appears also
in the NPP with theN-spin-flip dynamics, as shown on Fig.
3. This is the signature of an entropic-to-activated transition
at temperatureTg/2 [17]. Discrepancies at very short time
come from an exploration of states that are not exponentially
distributed due to finite size effects, but also from finite time
effects since correlation functions are calculated analytically
in the limit of asymptotically large times.

Different kinds of transitions between entropic and acti-
vated dynamics have been found in the context of the BMM,
or of modified versions of this model[17]. One, already
mentioned in the Introduction, is a crossover from an en-
tropic to an activated regime as the system ages. The heat
bath temperature is kept constant in this process, and a char-
acteristic time scale is associated with the crossover. A sec-
ond type of entropic-to-activated transition can be found also
when varying temperature. In the BMM with exponential
energy density, such a transition appears when the tempera-
ture crosses the valueTg/2; below Tg/2, the dynamics is
essentially dominated by entropic effects, while above this
value (with still T,Tg to remain in the aging regime) acti-
vated effects come into play. This is seen in particular from
the short time behaviorst! twd of the aging correlation func-

tion which becomes singular aboveTg/2, with an exponent
s1−md /m reminiscent of(although different from) the expo-
nent 1−m of the BTM [17]. This transition is also present in
the NPP withK=N, as seen from Eq.(11), confirming the
mapping between both models.

IV. INTERMEDIATE DYNAMICS: 1 ™K™N

We have seen in the previous section that the limiting
dynamical rules(K=1 and K=N) correspond to the two
simple kinds of trap models, namely, BTM(activated) and
BMM (entropic). Since the ratioK /N governing the dynami-
cal rules can be varied(almost) continuously from 0 to 1, a
crossover between both kinds of behavior should be found.
Yet, this crossover is rather nontrivial, as activated and en-
tropic dynamics are qualitatively different. In particular, one
can expect the horizon level to play a major role in this
change of dynamics. The way the observables decorrelate
may also lead to significant differences with respect to the
standard trap picture.

A. Differences from the previous rules

1. Slow decorrelation of smooth observables

In simple trap models, one usually assumes that the value
of the observable after a transition(a “jump”) is completely
decorrelated from the value it had before the jump. This
simple assumption, which might seem unrealistic at first
sight, is indeed satisfied by the single-spin-flip and the
N-spin-flip dynamics, but for different reasons. IfK=N, it is
clear that at each step, the new configuration is independent
of the old one, so that observables immediately decorrelate.
For the caseK=1, the mechanism appears to be more subtle:
each time a new configuration is chosen, smooth observables
typically decorrelate by a factors1−1/Nd. The dynamics is
dominated by low energy states(or traps), which are below
the horizon level. Once in such a trap, a single spin flip leads

FIG. 2. Aging behavior of the correlation functionCstw,tw+ td in
the NPP withK=N=50, forT=0.75Tg and differenttw; data rescale
as a function oft / tw. The full line is the analytical prediction Eq.
(10) for t@ tw. Inset: correlation for different temperatures; from left
to right: T/Tg=0.75,0.6,0.5,0.4,0stw=103d. The dashed line is
proportional tot−1.

FIG. 3. Short time behavior of the correlation function
Cstw,tw+ td and onset of a singularity with exponents1−md /m
(dashed lines) for 1/2,m,1 sm=T/Tgd, as given by Eq.(11).
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to a high energy state, and many subsequent flips are neces-
sary in order to find a new trap. Yet the typical time spent
wandering among these high energy states remains negli-
gible compared to the time spent within traps. So in terms of
the effective dynamics between traps, the observables indeed
fully decorrelate at each jump.

So what happens for 1!K!N? In this case, two subse-
quent configurations are still highly correlated, and it is not
clear either whether some relevant coarse-grained description
could lead to an effective decorrelation. One thus expects to
observe some nontrivial behaviors which may differ signifi-
cantly from those of the usual trap models.

2. Influence of the horizon level

The single-spin-flip dynamics studied previously has em-
phasized the fundamental role played by the horizon level.
On the other hand, this threshold completely disappears for
K=N. In the intermediate case 1!K!N, one can still define
a horizon level, but this level is expected to drift toward
lower energies asK increases. Using the same argument as
above to determine the horizon—see Eq.(6)—one gets the
following threshold energy:

Eh
K = − KTg ln N sK ! Nd. s12d

Below this level, the evolution is always activated: an energy
barrier at least equal tosEh

K−Ed has to be overcome when
starting from an energyE,Eh

K.
On the contrary, as long as the system visits states with

energy E well above Eh
K, the influence of the threshold

should not be felt. So one can guess that two different dy-
namical behaviors for temperatures above and belowTg/2
should still exist, as found also in the modified version of the
BMM including a threshold[17]. As a result, one expects to
find schematically the three following regimes(see also
Fig. 4).

(1) E.Eh
K, T,Tg/2. This case resembles the entropic

regime of the BMM, the only difference being that the mag-
netization decorrelates slowly, typically by a factor
s1−K /Nd after each jump, at variance with the full decorre-
lation usually assumed in the BMM.

(2) E.Eh
K, T.Tg/2. As in case 1, the dynamics is similar

to that of the BMM; in this temperature range, activated
effects become important, and observables also decorrelate
slowly.

(3) E,Eh
K. Once the horizon level is reached, the system

has no choice but to reemerge above it, which leads to an
activated dynamics similar to that of the BTM. No specific
role is played by the temperatureTg/2 below the horizon;
this activated regime is qualitatively the same in the whole
rangeT,Tg.

Thus, the NPP with a finite number of spin flips(i.e., K
!N) exhibits a crossover from an entropic regime to an ac-
tivated one as time elapses, for any given temperatureT
,Tg. Although it would have been interesting to investigate
the properties of the model within(and beyond) this cross-
over regime, we do not study them in the present paper, since
the crossover timet3 is exponential inK [more specifically,
t3,exps−Eh

K /Tgd,NK] which leads to time-consuming nu-
merical simulations. We thus focus on cases 1 and 2, corre-
sponding to energies well above the horizon level. Subse-
quently, all the results reported below correspond to times
much smaller than the crossover timet3.

B. Entropic versus activated dynamics

1. Qualitative approach

Before giving quantitative arguments about correlation
functions, let us propose a more intuitive understanding of
the difference between entropic and activated dynamics. To
this end, it is of interest to plot the energy as a function of
time for a single thermal history. This is done on Fig. 5 for
three different temperaturesT/Tg=0.35, 0.5, and 0.65. For
T,Tg/2, the energy decreases essentially in a monotonic
way, and the evolution is close to the zero temperature one:
the dynamics remains entropic. On the contrary, forT
.Tg/2, the system comes back many times to high energy
levels, as if it had to reemerge from a deep trap: activated
events dominate the evolution, which is then rather similar to
that of the activated trap model.

Note that qualitatively similar trajectories in energy space
can be found in the caseK=N discussed in the previous
section as well as in the BMM. In this context, it has been
proposed[17] to characterize the type of dynamics by com-
puting the average energykE8lE reached in a transition be-
tween two different microscopic states, starting from a given
energyE:

kE8lE =

E
−`

0

dE8E8WsE → E8d

E
−`

0

dE8WsE → E8d
. s13d

Using the Metropolis rules and assuming that the visited en-
ergies are still well above the horizon level, this quantity
reads in the largeuEu limit

kE8lE = E +
2m − 1

1 − m
Tg. s14d

Below Tg/2, the energy is lowered on average at each step,
leading to an irreversible drift toward low energies.

On the contrary, aboveTg/2 the energy is raised on aver-
age, i.e.,kE8lE.E, as long asuEu is large enoughsE,0d. So

FIG. 4. Schematic view of the different dynamical regimes ap-
pearing in the NPP depending onT and on the typical energyE
visited by the system(large values ofuEu correspond to deep ener-
gies and long times).
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the energy variable performs a random walk in energy space,
with a bias toward high energies, and—roughly speaking—a
reflecting boundary condition atE=0. If time was counted in
number of jumps, the random walk would then reach a
steady state: energies tend to remain close to the boundary
E=0, as seen on Fig. 5. However, the largeruEu, the larger
the sojourn time, so that large fluctuations away from the
boundary(i.e., at largeuEu) dominate the real time dynamics.
So the probability to have energyE at time t does not reach
any steady state, and drifts continuously toward low ener-
gies. This competition between the bias toward high energy
and the large trapping time of low energy leads to the onset
of a singularity in the correlation function as discussed
above.

Since a full analytical solution of the correlation function
in the present model withK!N seems difficult to reach,
simple scaling arguments can be helpful in order to interpret
numerical simulations. Data shown on Fig. 5 suggest that the
type of scaling argument(or in other words, the relevant
approximations) may be different for entropic and activated
dynamics. In the entropic rangeT,Tg/2, the instantaneous
energyEstd can be decomposed into an average value(with

deterministic evolution) and a fluctuating term with zero
mean and a finite amplitude. Even though fluctuations are
not necessarily small, they do not dominate the dynamics
and may be considered as a perturbation over the average
deterministic evolution. So it may be reasonable to think that
a zeroth order approximation which would neglect fluctua-
tions could yield some relevant results, in particular concern-
ing the scaling behavior.

On the contrary, the dynamics forT.Tg/2 appears to be
dominated by activated events during which the system visits
high energy states. Fluctuations are now driving the evolu-
tion, and cannot be considered anymore as a perturbation
which could be ignored in a first step. Indeed, since the sys-
tem goes back frequently to superficial states at energyE
<0, the amplitude of the fluctuations(with respect to the
average energy at timet) diverges with time. So scaling ar-
guments involving only average values cannot be used any-
more.

2. Entropic temperature range T,Tg/2

Let us first consider the case of zero temperature and es-
timate the aging law for magnetization through a simple scal-
ing argument. Given that the magnetization decorrelates typi-
cally by a factor s1−K /Nd at each transition, one can
compute the correlationCR after R jumps. AssumingK!N,
we have in the largeR limit

CR < e−RK/N s15d

with the prescriptionCR=0=1. From Eq.(14), we know that
after each jump, the energy decreases of an amount ofTg on
average, so that afterR jumps the energy difference between
times tw and tw+ t is given by

Estw + td − Estwd < − RTg. s16d

From an energetic point of view, the NPP far aboveEh
K is

expected to be equivalent to the BMM. Subsequently, at an
energyE the corresponding trapping time is given by

tE = tMCSE
−`

E

dE8rsE8dD−1

s17d

wherersE8d is given by Eq.(4) andtMC=K /N (see Sec. II).
At low energy, this trapping time reduces to

tsEd < tMC
bge

−E/Tg

N s18d

whereN is a factor coming from the distributionrsEd. Since
the timetw+ t is of the order of the typical trapping time of
the state currently visited, Eq.(18) leads to the following
relation betweentw+ t andE:

tw + t <
K

N

bge
−E/Tg

N . s19d

This combined with Eqs.(15) and (16) gives

FIG. 5. Energy as a function a time for a single thermal history
at three different temperatures: from top to bottom,T/Tg=0.35, 0.5,
and 0.65(N=200 andK=5). Returns to high energy levels appear
only for T.Tg/2. At this temperature, the dynamics is rather simi-
lar to that of the BTM, with in particular an apparent reversibility
when plotted on a linear time scale[21].
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Cstw,tw + td < S tw + t

tw
D−K/N

s20d

for the aging correlation function at zero temperature. Al-
though rather naive, this simple scaling argument is very
well confirmed by long time simulations performed with an
efficient event-driven algorithm, as seen on Fig. 6. The
agreement with direct Monte Carlo simulations of NPP up to
accessible times is also very satisfactory(see Fig. 7, lower
curve). Note that a modified version of the BMM which
includes the property of slow decorrelation of the observable

precisely leads to the same behavior as Eq.(20) at zero tem-
perature[28].

For nonzero but low enough temperaturesT,Tg/2d, so
that activated processes do not dominate the dynamics, one
can use exactly the same argument, simply modifying the
time dependence of the average energy according to Eq.
(14):

Estw + td − Estwd < −
1 − 2m

1 − m
RTg, m ,

1

2
. s21d

This gives

Cstw,tw + td < S tw + t

tw
D−hK/N

s22d

with h=s1−md / s1−2md. Here again, this simple estimation
describes rather well the numerical simulations(Fig. 7).

So one sees that the law of decorrelation of the observable
between states, which is encoded in the ratioK /N, has a
dramatic impact on the corresponding aging laws. In particu-
lar, the specific behavior of the correlation function given by
Eqs.(20) and(22) has important consequences regarding the
thermodynamic limitN→`. According to the dependence of
K on N, the correlation function is able or not to decay at
large times. Indeed, ifK<aN with some positive constanta,
Cstw,tw+ td converges in the largeN limit to a well defined
scaling function which decays to 0 fort→` [see Eq.(20)].
On the contrary, ifK /N→0 for N→` (sayK is fixed), the
system becomes unable to decorrelate in the thermodynamic
limit, and Cstw,tw+ td remains equal to 1. Defininga as the
limit when N→` of the ratioK /N, and taking it as a control
parameter, one sees that a transition toward a state where
ergodicity is broken occurs ata=0.

3. Activated temperature range T.Tg/2

As already mentioned in the introduction of this section,
the dynamics in the temperature rangeTg/2,T,Tg is quali-
tatively different from that in the rangeT,Tg/2: jumps to
high energies, inducing large energy fluctuations, play an
important role in the evolution of the system. In this case, a
scaling argument based only on the deterministic evolution
of average values is not expected to be relevant.

Let us consider first the dynamics of the energy. Since for
K@1 the horizon levelEh

K is low, a significant energy range
aboveEh

K exists where energy states are all mutually acces-
sible, independent, and exponentially distributed. Given the
dynamical rules Eq.(5), the evolution of the energy is pre-
cisely that of the BMM; for instance, one should find the
same dynamic probability distributionPsE,td—i.e., the prob-
ability to have energyE at time t. In addition, once the
threshold level is reached, a fully activated dynamics typical
of the BTM should be recovered. So as far as the evolution
of the energy is concerned, the situation is very similar to the
BMM with threshold studied in[17].

Turning to the correlation function of smooth observables,
the situation is a bit more subtle. Numerical data from the
NPP model are shown on Fig. 8. At variance with the usual
results of the BMM, the long time tailst@ twd of the corre-
lation function seems to behave as a power law with a

FIG. 6. Correlation functionCstw,tw+ td up to very long timet at
zero temperature and for small values of the ratioK /N. Data were
obtained from an efficient(event-driven) Monte Carlo algorithm;
the thermodynamic limitN→` is taken, so that the horizon level
Eh

K=−KTg ln N cannot be reached.

FIG. 7. Direct Monte Carlo simulations of the correlation func-
tion in the rangeT,Tg/2, for small values ofK /N. For T.0, N
=200 and tw=104; for T=0, N=1000 andtw=500. It has been
checked that typical energies remain well above the horizon level.
Lines are predictions given by Eq.(22); no fitting parameter is used.
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temperature-dependent exponent. Yet one must admit that
these numerical data do not allow one to draw a definitive
conclusion on this point.

Since the magnetization decorrelates only by a factors1
−K /Nd (with K!N) at each transition, the evolution of the
correlation should be that of the BMM with slow decorrela-
tion. Still, this model has not been studied in detail in the
literature, and one might wish to know whether the behavior
of the correlation function resembles that of the hopping cor-
relation function in one of the usual trap model[28].

With this aim, we have simulated directly a modified ver-
sion of the BMM in which the observable is decorrelated
only by a factors1−xd at each transition, assumingx!1.
Numerical data are shown on Fig. 9. Interestingly, the behav-
ior of the correlation function is numerically found to be
reminiscent of both the BTM and the BMM. The short time
behaviorst! twd is very similar to that of the BMM: a sin-
gularity 1−C,st / twdg appears, with an exponentg very
close to the values1−md /m found for the hopping correla-
tion function of the BMM. On the contrary, the long time tail
becomes temperature dependent, at variance with the usual
BMM behavior given by Eq.(10), and in agreement with
numerical results found in the NPP(see Fig. 8). The corre-
sponding exponent is close to the exponent −m typical of
activated regimes, but significant discrepancies appear forT
close toTg/2. These discrepancies were somehow expected
from a continuity argument, since belowTg/2 the correlation
function decays with a very small exponent −hK /N.

V. FLUCTUATION-DISSIPATION RELATIONS

Generalizing the well-known equilibrium theorems,
fluctuation-dissipation relations have proven to be a very ro-
bust tool to study the out-of-equilibrium regime of glassy
models[29]. Given an observableO, in most cases[29,30],
the two-point correlation function between timet1 and t2
. t1,

Cst1,t2d ; kOst1dOst2dl s23d

and the response to a perturbationh conjugate toO,

Rst1,t2d ; U dkOst2dl
dhst1d

U
h=0

, s24d

are related through a FDR

Rst1,t2d =
1

Teffst1,t2d
]Cst1,t2d

]t1
. s25d

At equilibrium,Teffst1,t2d is given by the thermal bath and all
the system properties are time translational invariant. Far
from equilibrium, these FDR’s can be used to define a mean-
ingful effective temperature[30–32], as in the context of
mean field(or fully connected) spin-glass models[33]. Since
we are indeed dealing here with a fully connected spin
model, it is then natural to study the FDR. An important
question to address is the temporal independence of
Teffst1,t2d since only whenTeffst1,t2d does not depend on
times can a unique and well-defined effective temperature be
introduced. In this case, introducing the integrated response

xst1,t2d ; E
t1

t2

dt8Rst8,t2d, s26d

the FDR is said to belinear since thet2-parametric plot
xst1,t2d vs Cst1,t2d is a straight line whose slope is given by
−1/Teff.

A. FDR in the aging regime for K=N

The temperatureTg/2 separates the two different classes
of dynamics encountered in this model. It is then of interest
to compare the FDR’s in these two regimes. Numerical data

FIG. 8. Correlation function in the regimeTg/2,T,Tg for the
NPP with 1!K!N. Straight lines have slopem=T/Tg on log-log
scales, so as to compare with the activated behavior of the BTM.

FIG. 9. Correlation function in the BMM with a decorrelation
factor s1−xd; here,x=0.1. From top to bottom,T/Tg=0.52, 0.55,
0.6, 0.7, and 0.8. The long time tail becomes temperature depen-
dent, with an exponent close to the value −m found in the BTM, but
deviations increase whenT→Tg/2. Inset: short time behavior, with
the typical exponents1−md /m of the BMM (dashed).
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concerning the FDR for the global dynamicssK=Nd are
shown on Fig. 10, in the caseT,Tg/2.

As the NPP model with a global dynamics can be mapped
onto the BMM, one expects to recover the exact result found
in the BMM at zero temperature[34]—see also[35]—which
reads

Rstw,tw + td = −
2

Tg

]Cstw,tw + td
]t

, s27d

Rstw+ t ,twd being the response associated with the autocorre-
lation function Cstw,tw+ td. In terms of the integrated re-
sponse, this FDR can be reformulated as

xstw,tw + td =
1

Tg
f1 − Cstw,tw + td2g, s28d

taking into account the explicit expression of the correlation
[34]. Numerical data shown on Fig. 10 are in good agree-
ment with this analytical prediction. Interestingly, this zero
temperature solution seems to be also valid for any tempera-
ture in the “entropic range”T,Tg/2 (Fig. 10). As a result,
below Tg/2, the FDR remainsnonlinear.

From a technical viewpoint, the autocorrelation(9) is as-
sociated with the observableoi=1

N jisistd, wherehjij is a set of
quenched independent random variables that can take the
values ±1. It is understood that all measured quantities are
averaged over the realizations ofhjij. So the integrated re-
sponsexstw,tw+ td is numerically obtained in the NPP model
by computing

xstw,tw + td =
1

Nh
o
i=1

N

jisistw + td, t . 0, s29d

whereh is a small external field that is switched on at time
tw. This field h is coupled to the spins via a linear coupling
term Vh in the energy, also involvingji:

Eh = E + Vh, Vh = − ho
i=1

N

jisi . s30d

Above Tg/2, the FDR significantly depends onT but
seems to have unchanged behavior in the two following lim-
its: t! tw and t@ tw (Fig. 10). In the former, the slope of the
curveC vs R is T−1 (as in equilibrium) whereas in the latter,
the slope apparently goes to 0, which might be interpreted as
an infinite effective temperature. Yet, such a temperature
must be taken with care since the definition of effective tem-
peratures from the local slope of a nonlinear FDR remains an
unclear procedure.

Apart from this question of effective temperature, it is
quite interesting to see that one can discriminate between an
entropic regime and an activated one in the BMM at finite
temperature, from the initial slope of the FDR. The entropic
regime gives aT-independent slope corresponding to the
temperatureTg/2 that separates the two regimes, whereas the
activated regime gives a slope that corresponds to the ther-
mal bath temperatureT.

B. Out-of-equilibrium FDR for K™N

Let us consider now the intermediate dynamics 1!K
!N. In the caseT.Tg/2, one recovers whenK /N→0 the
same behavior as forK=1 [21], namely, a linear FDR with a
slope equal to 1/T, whereT is the heat bath temperature.
Thus there is no violation of fluctuation-dissipation theorem,
as seen on Fig. 11. The mechanisms at play are essentially

FIG. 10. Fluctuation-dissipation relations in the NPP forK=N
=50 for different temperaturesstw=104d; x is measured in units of
Tg. Numerical data atT=Tg/2 remain very close to the zero tem-
perature analytical relation of the BMM(full line). For T.Tg/2,
the initial slope is given by 1/T (dashed line).

FIG. 11. FDR forT.Tg/2 in the aging regime of the NPP, for
1!K!N: a linear relation with slopeT−1 is observed. Simulation
parameters:N=1000 andtw=105 for T=0.6Tg; N=100 andtw=2
3105 for T=0.7Tg.
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the same as for the activated dynamics found whenK=1 (see
[21]) so that this case need not necessarily be discussed in
detail. Note that although simple trap models usually do not
display linear FDR’s[34–36], such linear relations with
slope 1/T as in equilibrium can indeed be found in trap
models (at least for some particular observables) once the
spatial structure is taken into account[37].

On the contrary, the behavior of the system forT,Tg/2 is
much more surprising. Indeed, asK /N→0, numerical data
on the zero temperature FDR converge to a linear relation
with slope 2/Tg. Results for different values ofK /N and
different temperatures belowTg/2 are gathered in Fig. 12. As
mentioned above, the limit of linear FDR allows us to define
an effective temperature, which would be equal here toTg/2
and is thus temperature independent. So it appears that this
transition temperature between activated and entropic dy-
namics again plays an important role in the description of the
low temperature phase. It is also worth noticing that the ini-
tial slopes(i.e., for C<1) of the nonlinear FDR’s found for
the global dynamicsK=N are the same as the slopes of the
linear FDR’s in the case 1!K!N.

Here again, in this regimeT,Tg/2, the NPP model pre-
sents strong similarities with the BMM modified to include
slow decorrelation, as discussed in Sec. IV B 2. Indeed, it
can be shown that this particular version of the BMM, with a
vanishing decorrelation of the observable at each transition,
also leads to a linear FDR with a slopeTg/2 [28].

C. Interpretation of the linear FDR

Interestingly, this linear FDR with slope 2/Tg can be de-
rived analytically in the whole regimeT,Tg/2 for smooth
observables. The corresponding calculations are reported in
the Appendix. In this section, we simply try to give a sim-

plified picture of the physical mechanisms leading to this
nontrivial effective temperature by considering the case of
magnetization.

As seen in the caseK=1 [21], a key to the linearity of the
FDR is the fact that the magnetization induced by the fieldh
is not influenced by the state in which the system was at time
tw, when the field was switched on. In other words, the con-
tribution to the magnetization of this initial state should be
negligible. This is indeed the case here, since the contribu-
tion is expected to be of the order ofKh, whereas the total
magnetization should scale asNh. So in the limitK /N→0,
the above contribution vanishes. Notice that this property
does not hold for the BMMsK=Nd since the initial state
contribution is expected to be of the order ofNh. Subse-
quently, this case is not expected to give a linear FDT in
agreement with the established results[34] [see Eq.(27)].

Once this contribution is neglected, the linearity of the
FDR can be given through a rather simple physical interpre-
tation. It simply means that the relaxation toward the non-
zero magnetization induced by the fieldh behaves in the
same way as the relaxation toward zero starting from an
arbitrary magnetization induced by the spontaneous fluctua-
tions. So the slope of the FDR is determined by the
asymptotic value of the magnetization, a long time after the
field was applied. ForK=1, the visits to superficial states
induce asymptotically a constant magnetizationM*, since
the a priori distribution

rsMd =
1

Î2pN
e−M2/2N s31d

is weighted by the Boltzmann factorehM/T; the average value
of the resulting distribution is thenM * = hN/T. On the other
hand, the equal-time correlation(in the absence of field)
Cst ,td=kM2l /N is equal to 1; hence the slope 1/T of the
FDR [21]. One can expect this argument to be valid also in
the regimeT.Tg/2 for 1!K!N, thus accounting for the
slope 1/T found on Fig. 11.

Turning to the caseT,Tg/2, the asymptotic magnetiza-
tion can be computed from the following argument. Given
the current state characterized byE andM, one can compute
the probability that the magnetization takes the valueM8
after one transition, in the largeN limit [see Eqs.(A6) and
(A16)] in the Appendix. This distribution is Gaussian and

independent ofE; its average valueM̄8 can be identified with
the most probable value:

M̄8 = S1 −
K

N
DM + 2KS1 −

M2

N2 D h

Tg
. s32d

The asymptotic magnetization can be computed self-

consistently by looking for the fixed pointM̄8=M. Keeping
only the first order inh, one can safely neglect the term
M2/N2, since one expectsM ,Nh. Solving the resulting
equation and denoting the solution byM*, one finds M *
=2Nh/Tg. So, as here againCst ,td=1, the slope of the FDR
is expected to be 2/Tg.

FIG. 12. FDR in the entropic temperature rangeT,Tg/2 in the
NPP with 1!K!N. Data were obtained by direct Monte Carlo
simulations(MC) or by the event-driven algorithm(ED); tw=103

for MC and 1010 for ED. Data converge to a linear FDR in the limit
K /N→0 (and tw→`), with a slope 2/Tg. Thus in the regime the
effective temperature is equal toTg/2.
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So without entering into the details of the calculations
developed in the Appendix, this simple argument already al-
lows us to get an intuitive idea of the physical mechanisms
responsible for the linearity of the FDR, and for the effective
temperatureTg/2.

VI. DISCUSSION

A. Effective temperature

The effective temperatureTg/2 is very interesting for sev-
eral reasons. On the one hand, it is surprising to see that this
value is different from the usually expected valueTeff=Tg
which follows from mean field spin-glass models[38] and
from Edwards-like arguments[39]. To be more specific, one
may expect from these theories a value

T eff
−1 =

] ln r

]E
s33d

by associating lnrsEd with the complexity (or configura-
tional entropy) of the system. On the other hand, similar
results have been found in a recent study of the random
orthogonal model(ROM) [40], a spin-glass model with a
one-step replica symmetry breaking solution. Although the
results on the ROM were not considered along the lines of
the entropic-to-activated transition, we believe that it would
be of great interest to search for such a transition in this
model. To support this view, exponential tails proportional to
exps−Q/ld in the distribution of heat exchangesQ have been
found in the ROM[40]. This suggests the existence of an
underlying exponential distribution of energy levels with a
tail

rsEd ~ eE/l, E → − `. s34d

An interpretation based on a scenario of spontaneous and
stimulated relaxation in glassy systems[41], confirmed by
numerical measurements of the FDR’s in the ROM[40],
yields an effective temperatureTeff related tol throughTeff
=l /2. In other words, the relation between the effective tem-
perature and the slope of the exponential distribution is the
same as in the NPP with 1!K!N. This suggests that the
mechanisms at play in the NPP should be rather generic, on
condition that energy levels are exponentially distributed.
However, this latter condition should not be so restrictive,
since exponential distributions are expected for low lying
energy states on the basis of extreme statistics[12].

B. Influence of the energy distribution

As already mentioned, two kinds of transitions between
entropic and activated dynamics have to be distinguished in
this model. On the one hand, a transition can be found as a
function of temperature when crossing the valueTg/2. We
have studied this transition in detail within the NPP model.
On the other hand, a crossover between the two dynamics
also appears, at fixed temperature, when the energy of the
system reaches the horizon levelEh

K. Here the regime
changes as a function of time rather than temperature. We did
not study this phenomenon in detail within the NPP, as nu-

merical simulations were difficult due to the large value of
uEh

Ku.
The former transition is controlled by the ratiom=T/Tg of

the temperatureT and the characteristic energyTg of the
exponential density of statesrsEd. On the contrary, the latter
is due to the lack of direct paths between states lying below
the horizon level: the system has to reemerge first above the
horizon; hence the onset of activated dynamics. So in the
present model, different mechanisms are responsible for
these two types of transitions.

Yet the first mechanism, which is related to the shape of
the energy distribution, could also lead to a crossover as a
function of time, for a given temperature. With this aim, one
needs to consider a distributionrsEd which is not purely
exponential. For instance,rsEd could be composed of a first

exponential partrsEd~eE/Tg
s1d

for E* ,E,0, and a second

one rsEd~eE/Tg
s2d

for E,E*. Assuming Tg
s2d /2,T,Tg

s1d /2,

one then observes an entropic dynamics as long asĒstd re-
mains well aboveE*, and an activated one in the long time

regime, whenĒstd is belowE*.
Note that assuming on the contraryTg

s1d,Tg
s2d, one finds a

temperature rangeTg
s1d /2,T,Tg

s2d /2 such that the activated
regime is foundbefore the entropic one as the system ages
(at constant temperature), which is rather counterintuitive.
Clearly, this example using an energy density with two dif-
ferent exponential parts is a bit artificial, but it is interesting
for pedagogical purposes. A more natural example would be
for instance a Gaussian distribution:

rsEd =
1

Î2p
e−E2/2E0

2
. s35d

The steady-state distribution at temperatureT, PsEd
~rsEde−E/T, is also a Gaussian shifted toward low energies,
with average valueEst=−E0

2/T and the same varianceE0
2.

Assuming that we are in the low temperature regimeT!E0,
one hasuEstu@E0. After a quench from high temperature to a

low temperatureT, the mean valueĒstd is expected to drift
slowly toward the steady-state valueEst during the aging
regime, while the variance remains essentially constant.

WhenĒstd becomes close toEst—sayĒstd<Est/2—one can

linearize rsEd around Ēstd, to find locally an exponential
distribution:

PsE,td ~ eE/lstd s36d

with lstd=E0
2/ uĒstdu. This exponential approximation is valid

as long asuE−Ēstdu!E0
2/T. In particular, ifuE−Ēstdu<T, this

approximation is fully justified. It is then natural to define a
reduced parametermstd=T/lstd, which plays the same role

asm in the BMM. SinceuĒstdu increases with time, so does
mstd; equilibrium is reached form=1. Whenmstd reaches the
value 1

2, one expects a crossover from an entropic dynamics
to an activated one.

This behavior should hold more generally for any distri-
bution rsEd of the form
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rsEd , e−auEug, E → − `, s37d

with g.1. On the contrary, distributions satisfying Eq.(37)
with g,1 should lead to the reverse behavior, that is, an
activated regime followed by an entropic one, at least in
some temperature range. Note that such distributions with
g,1 exhibit a glassy behavior for any temperature[12,15].

VII. CONCLUSION

In this paper, we have established the dynamic phase dia-
gram of the NPP model as a function of temperature and of
the numberK of spins allowed to flip simultaneously. The
first result is that some particular dynamical rules lead to the
behaviors found in both usual trap models: the caseK=1
yields the activated trap model proposed by Bouchaud,
whereas the model withK=N can be mapped onto the en-
tropic version studied by Barrat and Mézard. The former
case has already been studied in[21], but was recalled here
for the sake of completeness.

In the intermediate range 1!K!N, the dynamics of the
energy remains essentially the same as forK=N, i.e., of
BMM type, within the time window accessible with numeri-
cal simulations. For longer time scales, a horizon levelEh

K

=−KTg ln N is expected to yield a crossover to an activated
regime, since states belowEh

K behave as isolated traps. Yet,
the major difference with usual trap models is the presence
of slow decorrelation of the observables: at each elementary
transition between states, the magnetization decorrelates
typically by a factors1−K /Nd, whereas full decorrelation in
a single transition is assumed for usual trap models. So the
NPP can be mapped onto a modified version of the BMM
which includes a slow decorrelation of the observable.

This extra property has important consequences. On the
one hand, in the entropic low temperature phaseT,Tg/2,
the correlation function decays only asfstw+ td / twg−hK/N, with
h=s1−md / s1−2md and m=T/Tg, i.e., much more slowly
than the hopping correlation function. Indeed, in the thermo-
dynamic limitN→`, an ergodicity breaking occurs(the cor-
relation function does not decay to 0) if K is such that
K /N→0. Actually, for N→`, the correlation decays to 0 at
large time only ifK<aN, with a.0. On the other hand, in
the temperature rangeTg/2,T,Tg, the short time behavior
of the correlation is precisely that of the usual BMM, with
the onset of a singularity aboveTg/2, but the long time
(power law) tail becomes temperature dependent, with an
exponent close to that of the BTM. This result suggests that
thermal activation may be in that case the only relevant
mechanism to decorrelate the observables, contrary to the
activated phase of the BMM in which both thermal activa-
tion and entropic slowing down control the system.

In addition, we have studied the fluctuation-dissipation
relation in the NPP model. In the limitK!N, the FDR be-
comes linear, and its slope depends on the temperature range
considered. ForT.Tg/2, the slope is equal toT−1, as in
equilibrium and similarly to the caseK=1. On the contrary,
for T,Tg/2, the slope is temperature independent and is
equal to 2/Tg. Thus the effective temperature in this low
temperature phase isTg/2.
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APPENDIX: ANALYTICAL DEVELOPMENTS ON FDR

In this appendix, we shall show, in the context of a modi-
fied BMM, how a well-defined effective temperatureTg/2
emerges for slow decaying observables. To this end, we first
study the observable “magnetization”sMd for a system mi-
croscopically composed ofN spins and for whichK spins at
most can be flipped. Subsequently, magnetization is indepen-
dent of the energy and the energy evolution is the one given
by the BMM endowed with Metropolis dynamics(5). We
study the FDR forT,Tg/2, taking the limits in the follow-
ing order:N→`, h→0, andK→`. Then, in the same lim-
its, we generalize the results to the general case of smooth
observables that decorrelate by a factors1−K /Nd.

FDR for the magnetization

Zero temperature case

We begin by studying the problem when temperature van-
ishes, choosing the magnetization as the(smooth) observ-
able. To derive the wished FDR, we need the relation be-
tween the magnetizationM before a jump and the
magnetizationM8 after it. The system is assumed to be at an
energyE, in the presence of an external fieldh.

If K spins are chosen to be flipped with probability1
2, then

K /2 spins are flipped on average. Assuming thatK is large,
fluctuations around this valueK /2 can be neglected, and the
effective dynamical rule is thatK /2 spins chosen at random
are flipped(the new configuration found in this way is then
accepted or rejected according to the Metropolis rate). Given
a magnetizationM, the probability for a spin to be in the up
state is given by

pM =
1

2
+

M

2N
. sA1d

The probability to flip a numberLøK /2 of up spins reads

PKsLd = SK/2

L
DpM

L s1 − pMdK/2−L. sA2d

In the limit 1!K!N, using the Gaussian limit of Bernoulli
processes, one finds for the new magnetizationM8 at each
Monte Carlo step the following probability distribution:

rKsM8uMd =
1

Î2paM

expS−
sM8 − s1 − K/NdMd2

2aM
D

sA3d

with aM =8KpMs1−pMd. Taking into account the zero tem-
perature acceptance rate, the distribution of magnetization
PsM8 uE,Md after a transition is given by
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PsM8uE,Md =
rKsM8uMd
GsE,M,hd

3E dE8rsE8dQ„E − hM − sE8 − hM8d…

sA4d

whereQs·d is the Heaviside function, andGsE,M ,hd is the
normalization factor which can be interpreted as the escape
rate from the statehE,Mj:

GsE,M,hd =E dM8rKsM8uMd

3E dE8rsE8dQ„E − hM − sE8 − hM8d….

sA5d

One can then compute explicitly the distribution
PsM8 uE,Md:

PsM8uE,Md =
1

Î2paM

3 expS−
sM8 − s1 − K/NdM − aMbghd2

2aM
D
sA6d

which, interestingly, appears to beindependentof the energy
E. This results in a decoupling between energy and magne-
tization. Note that apart from the normalization factor, the
above calculation essentially amounts to multiplying thea
priori distributionrKsM8 uMd by a factor expfbghsM8−Mdg.
Given this distribution, we can recursively compute the mag-
netization of the system afterR jumps. Assuming that the
magnetization isMw at time tw when the fieldh is applied,
andMR after R jumps, one obtains the following relations:

kMRMwl0 = aRkMw
2l0, sA7d

kMRlh = aRkMwl0 + 2bcNhs1 − aRd sA8d

with a=1−K /N. The subscript 0 indicates that the average is
taken without any external field. Since there is no spontane-
ous magnetization, one haskMwl0=0. In this case, and in this
caseonly, one finds using alsokMw

2l0=N

kMRlh = 2bghskMw
2l0 − kMRMwl0d. sA9d

Strictly speaking, this relation is not the FDR since the para-
metric variable involved is the numberR of jumps. In order
to convert Eq.(A9) into a relation involving timestw and
tw+ t, we need to average it with the distribution of time
intervalst given the numberR of jumps. Let us consider this
distribution in the presence of a small fieldh. At leading
order inh, it is the sum of the zero field distribution and of
terms proportional toKh (we do not write the exact distribu-
tion here for the sake of simplicity). We then see that the
limits have to be taken in the following order:N→`, h
→0, K→`. Thus, the average of Eq.(A9) with that time

distribution in the presence ofh, combined with these very
limits, leads to

U ]kMstw + tdlh

]h
U

h=0
=

2

Tg
fkMstw + td2l0 − kMstw + tdMstwdl0g.

sA10d

Making the following identifications:

xstw,tw + td =
1

N
U ]kMstw + tdlh

]h
U

h=0
, sA11d

Cstw,tw + td =
1

N
kMstw + tdMstwdl0, sA12d

we get the expected FDR, using alsoCstw,twd=1:

xstw,tw + td =
2

Tg
f1 − Cstw,tw + tdg. sA13d

Note that the order of the limits does not restrict so much the
validity domain of such a relation. Indeed, we have seen that
K does not need to be very large to get a long BMM regime.
And, for finite K, the same relation as Eq.(A13) can be
exactly derived[42]. The reason we have chosen to present
the largeK solution lies in the simplicity of the relations
between magnetization before and after a jump. In this case,
it should be noticed also that this FDR is only valid for
smooth observables with zero mean value at any time. Such
prescriptions on the observables are very similar to the ones
needed to have a unique asymptotic FDR in the BTM[36].

Finite temperature

We shall see how to extend Eq.(A13) to nonzero tem-
peratures. In this case, Eq.(A3) is still valid, whereas rela-
tion (A5) is modified due to the Metropolis rates. The distri-
bution PTsM8 uE,Md now reads

PTsM8uE,Md =
1

GT
hsE,Md

rKsM8uMdSE
−`

E−hsM−M8d
dE8ebgE8

+E
E−hsM−M8d

0

dE8e−bfE8−hM8−sE−hMdgebgE8D
sA14d

whereGT
hsE,Md is the escape rate at temperatureT and with

field h, defined by normalizingPsM8 uE,Md. Performing the
change of variablesx=E8−hsM8−Md in the integrals, one
gets

PTsM8uE,Md =
rKsM8uMd
GT

hsE,Md
ebghsM8−Md

3 SE
−`

E

dx ebgx +E
E

hsM8−Md
dx e−bsx−Ed+bgxD .

sA15d

As a result, the dependence onhsM8−Md is essentially fac-
torized, apart from the upper bound of the second integral. In

DYNAMIC PHASE DIAGRAM OF THE NUMBER … PHYSICAL REVIEW E 70, 066126(2004)

066126-13



the regimeT.Tg/2, this bound must play an important role,
since the system quite often visits the high energy states. On
the contrary, in the opposite temperature rangeT,Tg/2,
these superficial states are no longer visited in the long time
regime, so that one can neglect the influence of this upper
bound and safely replace it by 0 sinceuM8−Mu,ÎK andh
tends to 0 at finiteK. Within this approximation, the distri-
bution PTsM8 uE,Md is again computed by multiplying
rKsM8 uMd by the exponential factor expfbchsM8−Mdg, pre-
cisely as in the zero temperature case.

Thus, for any temperature lower thanTg/2, the condi-
tional distribution of magnetization after a transition is at
large time the same as in the zero temperature case:

PTsM8uE,Md = PsM8uE,Md. sA16d

Since moreoverPTsM8 uE,Md does not depend onE, the
derivation of the FDR is exactly the same as in the zero
temperature case. This shows that an effective temperature
equal to Tg/2 is expected in all the entropic regimeT
,Tg/2.

Generalization to other smooth observables

More generally, one can consider observablesA that
decorrelate by a factors1−K /Nd at each transition. In this
case, we have the following relation between the valueA of
the observable before a jump and the valueA8 after:

kA8Al0 = S1 −
K

N
DkA2l0. sA17d

A natural stochastic evolution rule for such an observable is
the following:

A8 = S1 −
K

N
DA + zA. sA18d

zA is a Gaussian white noise whose amplitude is imposed
both by the conservation of variance ofA, that is, kA82l
=kA2l, and by the correlation given in Eq.(A17). Thus, at
leading order inK /N, one can show that the variance ofzA
does not depend on the current valueA. The variance is
given by

kzA
2l =

2K

N
kA2l0. sA19d

Notice that we have implicitly chosen the case of observ-
ables that are not correlated with the energy, since we as-
sumed thatzA does not depend on the energy.

Then, we can see that Eq.(A18) can be written as Eq.
(A3) with aM =2KkA2l /N. Thus, Eqs.(A7) and(A8) become

kARAwl0 = aRkAw
2l0, sA20d

kARlh = aRkAwl0 + 2bchkAw
2l0s1 − aRd. sA21d

The end of the calculation is precisely the same as for the
magnetization.

To conclude, this analysis shows that a generic smooth
observable is expected to satisfy a linear FDR with an effec-
tive temperatureTg/2 whenT,Tg/2. Moreover, we believe
that the stochastic rule(A18) is not an unavoidable ingredi-
ent for the emergence of the effective temperature. Indeed, as
we already mentioned, it can be shown that magnetization
satisfies(A13) even in the finiteK case for which the Gauss-
ian law (A3) does not apply[42].
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