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We study the dynamic phase diagram of a spin model associated with the number partitioning problem, as
a function of temperature and of the fractiBiN of spins allowed to flip simultaneously. The case 1
reproduces the activated behavior of Bouchaud’s trap model, whereas the opposikeslxhitan be mapped
onto the entropic trap model proposed by Barrat and Mézard. In the intermediate<€&s€ N, the dynamics
corresponds to a modified version of the Barrat and Mézard model, which includes aralber than
instantaneoysdecorrelation at each step. A transition from an activated regime to an entropic one is observed
at temperaturdy/2 in agreement with recent work on this model. Ergodicity breaking occur$ 4ofy/2 in
the thermodynamic limit, ilK/N— 0. In this temperature range, the model exhibits a nontrivial fluctuation-
dissipation relation leading foK <N to a single effective temperature equal Tg/2. These results give
insights into the relevance and limitations of the picture proposed by simple trap models.
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I. INTRODUCTION models can be proposed. This situation is particularly strik-

An important step toward the understanding of glassy dy_|ng since the physical interpretation of trap models looks

namics[1] has been made when it was recognized that somgUIte clear, but arguments usually fail to go beyond a quali-

generic properties of configuration space—or phase space@t've level.

could be responsible for the dramatic slowing down of the e first explicit(and mathematically rigoroysnapping
dynamics [2-5]. In particular, the geometric structure of [18] was proposed between tlimite sizerandom energy
phase space leads schematically to two different kinds offodel [19] and the BTM. Trap mechanism has also been
dynamics: an “activated” dynamics in which the system isshown to be a tangible description of supercooled liquids
trapped in local minima by significant energy barriers, and arslowing down when considering the distribution of the en-
“entropic” dynamics which results from a decreasing numbergy associated with the inherent structuf@g]. On the
of downward directions when visiting saddles in configura-other hand, it has been proposed receflj to use a modi-
tion spacg6-11]. In this latter case, the system spends mosfied version of the number partitioning proble@NPP),
of its time wandering in search of these rare paths whichmapped onto a fully connected spin model with a one-spin-
would allow it to decrease its energy. flip dynamics, to illustrate how an activated behavior typical
A popular and qualitative description of these glassy beof the BTM arises from a microscopic dynamics.
haviors has been proposed in the past decade in terms of trap In the present paper, we discuss the influence of the
models, in which a very simplified phase space dynamicghoice of the dynamics on the behavior of the NPP. We show
takes place. In these models, any state can be reached fram particular that varying the number of spins that can be
any other through a single transition, disregarding any nonflipped simultaneously allows us to recover most of the phe-
trivial structure related to the finite dimensionality of real nomenology of glass theory, namely, transitions between en-
space. Such models actually focus on the distribution of lowtropic and activated behavior, nonlinear as well as linear
energy states, often assumed to be exponential, which can p&ith nontrivial slopg fluctuation-dissipation relations
justified on the basis of extreme statist[d<]. (FDR’s), and ergodicity breaking. Conversely, these micro-
Depending on the specific choice of the transition ratesscopic realizations allow us to shed some light on the inter-
one can build an activated dynamics—as in Bouchaud’s trapretation, as well as limitations, of simple phase space mod-
model(BTM) [13—-19—or an entropic one—as in the Barrat els like the BTM and the BMM.
and Mézard modgBMM) [16,17. Considering a finite size The paper is organized as follows: Sec. Il introduces the
BMM, or introducing by hand a threshold level, one canNPP model, and Sec. IIl describes the basic mappings onto
observe a crossover from an entropic to an activated regimene usual trap models for some specific dynamical rules. In
[17]. Intuitively, such a crossover means that the system is n@ec. IV, we introduce more general dynamical rules, and
longer able to find downward directions since it has reachedtudy the behavior of the model, emphasizing the entropic-
the bottom of the “valley.” Further evolution can proceedto-activated transitions as well as relations to trap models. In
only by crossing energy barriers. Sec. V, the FDR is studied and shown to be linear in a par-
In spite of the conceptual interest of these models, iticular limit, with a nontrivial slope. Finally, we discuss in
seems rather difficult to find microscopic modéle., mod-  Sec. VI the interpretation of this linear FDR, as well as the
els in which microscopic degrees of freedom are explicitlyinfluence of the energy density on the transition between
describegl where a reasonably clear mapping to such trapentropic and activated regimes.
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Il. OPTIMIZATION AND SPIN MODEL former is first order whereas the latter is second order

The optmizaton problen of th unconstrain N, deL12.21, T dfference s due o e shape of e ditbutor
scribed by a cost function, can be mapped onto a fully con- 9y ' '

nected spin model with a disordered Hamiltoni@4—2§. and exponential in the present NPP model. However, this

By suitably choosing the cost function and the dynamics, thi dgfnezjeonecse r:gttgf?fet:tetr:; Ogyir:]amlfonztr?i;es %ff tt?]i %‘5%2322’
spin model can be given a glassy behavior which resembles ging prop '

. Which are indeed very similafl8,21], since the Gaussian
closely that of the BTM21]. Given a set oN random real e .
numbgrsal ay, ... A ul\r/1[ifogmly drawn from the interva0 distribution of the REM can be well approximated by an

En=

The gauge transformatiom;=4a;5 casts this Hamiltonian
into a mean field antiferromagnetic Ising model for which
thermodynamical properties can be exactly derij/22]. In

) . - : . exponential distribution in the energy range visited during
1], the original NPP consists of finding the optimum configu- " " .
ration {Sﬁ}ioﬂ,...w wheres =+1 are Ising spins, which mini- aging[12]. In addition, an important property shared by both
ergy become decorrelated.
N From an optimization point of view, many interesting
2 as
i=1 [24,27. Thus, it is interesting to study, whé@h<T,, how the
This is equivalent to finding a partition of the st} into system(3) approaches the ground state depending on the
each subset are as close as possible. In terms of spin systerﬁgc?;' Slnct?] tht_e NPP %elgr}gs to th? C"T’}fls cif NPt-(;cr)]mpIete
this problem corresponds without loss of generality to problems, the time needed for any algorithm 1o get the per-
: : : A S naive algorithm which consists of an exhaustive enumeration
magnetic spin glass with factorized couplings: of all the partitions is then as efficient as any elaborated
though the dynamics studied in this paper seanpsiori to
be inappropriate to the optimization problem, all the under-
cesses, especially aging phenomena, come from the NP-hard
; ) ) i A r}ature of the problem.
this sense, this model is the antiferromagnetic counterpart o
the Mattis spin modef23]. _ ance lead to an aging regime before reaching the ground

From a thermodynamic point of view, Mertefi84,23  ga1e |n the following, we usk-spin-flip Metropolis rules

_ |2 — . . .

(Em)=V37N2". Interestingly, from such a Hamiltonian, step, a new configuratiofs’} is obtained from{s} in the
one can derive a new cost funCtlon, l.e., a hew energy, thqb”own']g way: K Spins are chosen randomly’ and each of

mizes the following cost function: models is that for low energy states magnetization and en-
. (1) questions are inherent to the NP-hard nature of the NPP
two subsetsS, andsS, such that the sums of tr&'s within local dynamical laws, given the prescription of detailed bal-
Mattis-like HamiltonianEy .= E2m describing an antiferro- afect partition is exponential in the system si¥e The most
EMamszz aa;ss;- 2) algorithm whenN becomes larg¢25]. Subsequently, even
i
lying mechanisms responsible for out-of-equilibrium pro-
So belowT, any dynamical rulesgsatisfying detailed bal-
has shown that the ground state of the HamiltorilBrwas (1 <K <N) defined as follows. At each Monte Carlo time
has an extensive ground state: theseK spins is flipped with probabilitg. This new configu-

N ration is then accepted with a probability equal to the Me-
E=TyIn(Ey =Tyln > as (3)  tropolis acceptance rates at temperaflire
= e E-BT if E' > E,
where T fixes the energy scale; from now on the ground W({s} —{s'} = L M (5)
state scales lik€Ey) ~—-NT,In 2. In this paper, we consider : =
the study of a system defined by such a Hamiltonian. T being the temperature of the thermal bath. Monte Carlo
In this system, the energigs<kIn N (wherek is some time steps are separated by a physical time intemyg
positive constantare independent random variabled ,24 =K/N in the natural time units of the system. This ensures
that are distributed according tassumingN> 1) that each spin keeps a probability of the order of 1 to be
1 chosen within a unit time interval, even in the thermody-
E) = N ex E- ——exp28.E 4 namic limit.
pE =N P(Bg 20°N P2hy )) @ We show in the following that this model leads to a rich

with NV'=28 |\2ma?N, and 8,=T-%. The essential property dynqmlc phase dl_agram, the con_trol _parameter bemg_ the
of this distr?butionp(E) is thagt it has an exponential tail for fraction K/N of spins aIIo_wed to ﬂ'.p s_|multaneously. This
E— —o. Such a tail is usually the key ingredient to obtain aphase d'agra”.‘ can pe_ discussed in light of both the BMM
glass transition at finite temperature. and BTM studies at finite temperature.
Using Derrida’s microcanonical argument for the random
energy model(REM) [19], a thermodynamic transition is IIl. SIMPLE REALIZATIONS OF TRAP MODELS
expected at temperatufg, below which the system is frozen _ _ . .
in a limited number of states surrounding the ground state, so In this section, we study two different dynamical rules: a
that the entropydensity vanishes. single-spin-flip dynamic¢K=1) and a global dynamics in-
The glass transition in the present model resembles theolving full rearrangementK=N). Interestingly, these two
standard REM transition, the only difference being that thdimiting cases appear to be microscopic realizations of trap

066126-2



DYNAMIC PHASE DIAGRAM OF THE NUMBER ... PHYSICAL REVIEW E 70, 066126(2004)

E B. N-spin-flip dynamics and BMM behavior
Let us consider now a global dynami@se., K=N) such

Observablefr—"" e _— that all spins are flipped random{and simultaneous)yat

each step in order to find a new configuration. The transition
. is then accepted or rejected according to the Metropolis rates
Gibb WA 's then 10 The VISIropols

lilie S:|__ MY /\/\’\/\ il Horizon given in Eq.(5). As a result, any configuration & priori

states accessible from any othdapart from the energetic con-
strainy, which means that the horizon level disappears, and
the new configuration is in general completely decorrelated

ﬁg?ngg_ from th.e old one. As, moreover, energies are distrjbuted ex-
states ponentially, one can expect this model to be a microscopic
realization of the BMM. In the following, we propose more
gquantitative arguments as well as numerical simulations to
Phase Space

support this statement.

FIG. 1. Schematic representation of the phase space structure of In all tTe.nuTerlcfal S|mulat|0n% we haV(_a dealt V\gth the
the NPP model with single-spin-fiip dynamics. The horizon level@utocorrelation functioC(t,, t,+t) between timet, andt,

separates surface states and low energy states. An observabletis defined by the average over the thermal histories of the

smooth if it varies slowly between neighboring states. history-dependent correlation functi@jngdty, ty+1):
i i i C(thtw + t) = <CSing|€(tW1tW + t)> (7)
models, the former with an activated behavior and the latter
with an entropic one. wit
N
. - s 1
A. Single-spin-flip dynamics: Activated traps Csingle(tWatw +1) = NE s (t,)S(t, +1). (8)
i=1

It has been shown recent]1] that a single-spin-flip dy-

namics naturally leads to an activated trap behavior like thathis choice of correlation is usual in spin models, although
of Bouchaud, in which the aging phenomenon comes fromypther choices like the autocorrelation of the magnetization
the divergence of the average trapping time. Given the denyould be possible. ActuallyC(t,,t,+t) is the autocorrela-
sity of states(4) with an exponential tail, two dynamical tjgn of the observabl&,&s, where& = +1 are quenched ran-
ingredients are responsible for such a behavior: on the ongom variables. We show in the Appendix that the specific
hand, the existence of a horizon level below which the sysghojce of the observable does not influence the main proper-
tem has no choice but to reemerge above it so as to continygys of the model, as long as the observable is smooth.

its evolution; on the other hand, instantaneous jumps into & |n the case of a full redistribution of the spins, this auto-
randomly chosen new trap after reemerging at the horizoggrelation reduces to the hopping correlation function

level, associated with a full decorrelation. CH(t,,,t,+1), defined by the following history-dependent
The former appears naturally, since when the energy i§,nction:
lower than ( J=s(t)
1 if s, +t)=s(t, O,
En=TgIn(@min) = - TgINN (6) Congidtwtw + 1) = {0 Wotherwisz ©

with a.li“inlz n;mial, t ’?N) :r?(l/N)’ a 5".19'6 Sﬂm ﬂ|p1;1hec- which precisely leads to the same correlation as in trap mod-
essarily leads to a state whose energy is greateriijafine els. The aging regime is characterized by the fact that the

latter is due to the combination of two properties. First, Iowcorrelation functionC(t,, t,+t) becomes a functiog(t/t,,)

energy states are totally uncorr_elated; seconq, at large t_ir_negf the ratiot/t,, only. For trap models with exponential en-
Lheetvxt/gi Isc?viné naerroungt;?gsh;erézoogelgvri ?iurilglg svig]a?sg'%nergy distributions, the asymptotic behavior of the function

v energy g9ig P %I(t/tw) for t<t, and fort>t, is characteristic of the nature
to the trapping time in these deep states.

Interestingly, the need for reorganization around high en_(entroplc or activatedof the dynamps[l?]. In the NPP,
ergy levels in order to go from one low energy state to an_numerlcal data show thafull) aging 1s obser_ved for any
other is responsible for an equilibriumlike linear FDR with temperaturd’<Tg as _ex'pecteajsee Fig. 2 forT—.0.75|'g). .
slope 11T for smooth observables, i.e., observables like the In the .'°F‘9 time limit (t>t§“’)' the asymptot|c. behavior
magnetization whose relative variation is of the order dfl1/ characteristic of the BMM, V\_"th a temperature-independent
after one spin flip—see Fig. 1 for a schematic view. Note thafXPONent, is recoveredig. 2.
this law is observed even in the aging regime. This comes ty
from the fact that the evolution of smooth observables is Cllwtw+) ~ . (10
dominated by the sojourns among high energy states, where
they can(almosp equilibrate. Once in a deep state, these Actually, one can be more specific and compute the exact
observables become frozen, but their typical value is indeedsymptotic expression of the correlation function in the case
that given by the Gibbs distribution, since it is determined byof Metropolis rates. One find<C(t,t,+t)=(1-u)t,/t,
the high energy states visited just before falling into the trapwhere u=T/Ty is the reduced temperature. This prediction
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FIG. 2. Aging behavior of the correlation functi@it,,, t,+t) in
the NPP withkK=N=50, forT=0.75T and different,; data rescale
as a function ott/t,. The full line is the analytical prediction Eq.
(10) for t>1,,. Inset: correlation for different temperatures; from left

to right: T/Tg=0.75,O.6,O.5,0.4,QtW=103). The dashed line is | ) ) )
proportional tot~™. tion which becomes singular aboWig/2, with an exponent

(1-w)/ u reminiscent of(although different fromthe expo-
nent 1—-w of the BTM [17]. This transition is also present in
the NPP withK=N, as seen from Eq.11), confirming the
mapping between both models.

FIG. 3. Short time behavior of the correlation function
C(ty,ty,+t) and onset of a singularity with exponefit —u)/u
(dashed linegfor 1/2<u<1 (u=T/Ty), as given by Eq(11).

fits well the numerical data, as shown on Fig. 2.
In the short time limit(t<t,,), an asymptotic analysis of
the correlation function in the BMM shows the onset of a

singularity for temperatures in the rangg/2<T<T:
IV. INTERMEDIATE DYNAMICS: 1 <K<N

1-p)!
<l>( M)M, }<M< 1, We have seen in the previous section that the limiting
1= Clty, ty+1) ~ ty 2 (11) dynamical rules(K=1 and K=N) correspond to the two
wrw simple kinds of trap models, namely, BTkactivated and
£ I 2 BMM (entropig. Since the ratid/N governing the dynami-

v cal rules can be variethlmosy continuously from 0 to 1, a

More precisely, the singularity concerns the scaling functiorfrossover between both kinds of behavior should be found.
C(u) in the limit u— 0. This singularity clearly appears also Yet,.th|s crossover is rather_ nontr|.V|aI, as act|vat_ed and en-
in the NPP with theN-spin-flip dynamics, as shown on Fig. FoPiC dynamics are.quahtatlvely different. In_partlculqr, one
3. This is the signature of an entropic-to-activated transitiorf@" €xpect the horizon level to play a major role in this
at temperaturd,/2 [17]. Discrepancies at very short time change of dynamlc_s. _T_he way the obser\_/ables decorrelate
come from an exploration of states that are not exponentiallj’@ also lead to significant differences with respect to the
distributed due to finite size effects, but also from finite imeStandard trap picture.
effects since correlation functions are calculated analytically
in the limit of asymptotically large times. A. Differences from the previous rules

Different kinds of transitions between entropic and acti-
vated dynamics have been found in the context of the BMM,
or of modified versions of this modgll7]. One, already In simple trap models, one usually assumes that the value
mentioned in the Introduction, is a crossover from an enof the observable after a transitiga “jump”) is completely
tropic to an activated regime as the system ages. The hedecorrelated from the value it had before the jump. This
bath temperature is kept constant in this process, and a chagimple assumption, which might seem unrealistic at first
acteristic time scale is associated with the crossover. A sesight, is indeed satisfied by the single-spin-flip and the
ond type of entropic-to-activated transition can be found alsdN-spin-flip dynamics, but for different reasons KEN, it is
when varying temperature. In the BMM with exponential clear that at each step, the new configuration is independent
energy density, such a transition appears when the temperaf the old one, so that observables immediately decorrelate.
ture crosses the valugy/2; below Ty/2, the dynamics is For the cas& =1, the mechanism appears to be more subtle:
essentially dominated by entropic effects, while above thigach time a new configuration is chosen, smooth observables
value (with still T<T, to remain in the aging regimeacti- typically decorrelate by a factqd—1/N). The dynamics is
vated effects come into play. This is seen in particular fromdominated by low energy statésr trapg, which are below
the short time behavidt <t,,) of the aging correlation func- the horizon level. Once in such a trap, a single spin flip leads

1. Slow decorrelation of smooth observables
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[l : (3) E<EK. Once the horizon level is reached, the system
BIM has no choice but to reemerge above it, which leads to an
horizon=E} activated dynamics similar to that of the BTM. No specific
E Disordered role is played by the temperatuiig/2 below the horizon;
ol Phase this activated regime is qualitatively the same in the whole
rangeT <T,.
f,mic ff[,gfm Thus, the NPP with a finite number of spin flifise., K
regime regime <N) exhibits a crossover from an entropic regime to an ac-
T2 T, T tivated one as time elapses, for any given temperalure

<Tg. Although it would have been interesting to investigate

FIG. 4. Schematic view of the different dynamical regimes ap-the properties of the model withifand beyondl this cross-
pearing in the NPP depending dhand on the typical energi over regime, we do not study them in the present paper, since
visited by the systenilarge values ofE| correspond to deep ener- the crossover time, is exponential ik [more specifically,
gies and long times t. ~exp(-E{\/ T) ~NK] which leads to time-consuming nu-

merical simulations. We thus focus on cases 1 and 2, corre-
to a high energy state, and many subsequent flips are necegponding to energies well above the horizon level. Subse-
sary in order to find a new trap. Yet the typical time spentquently, all the results reported below correspond to times
wandering among these high energy states remains neglinuch smaller than the crossover time
gible compared to the time spent within traps. So in terms of
the effective dynamics between traps, the observables indeed B. Entropic versus activated dynamics
fully decorrelate at each jump.

So what happens for€K<N? In this case, two subse-
guent configurations are still highly correlated, and it is not Before giving quantitative arguments about correlation
clear either whether some relevant coarse-grained descriptidanctions, let us propose a more intuitive understanding of
could lead to an effective decorrelation. One thus expects tthe difference between entropic and activated dynamics. To
observe some nontrivial behaviors which may differ signifi-this end, it is of interest to plot the energy as a function of
cantly from those of the usual trap models. time for a single thermal history. This is done on Fig. 5 for
three different temperature&/ T;=0.35, 0.5, and 0.65. For
T<T4/2, the energy decreases essentially in a monotonic

The single-spin-flip dynamics studied previously has emay, ‘and the evolution is close to the zero temperature one:
pha5|zed the fundamental role played by the horizon Ievel;he dynam|cs remains entrop|c On the contrary, for
On the other hand, this threshold completely disappears ijST /2, the system comes back many times to high energy
K=N. In the intermediate case<lK <N, one can still define Ievels as if it had to reemerge from a deep trap: activated
a horizon level, but this level is expected to drift toward events dominate the evolution, which is then rather similar to
lower energies aK increases. Using the same argument ashat of the activated trap model.

1. Qualitative approach

2. Influence of the horizon level

above to determine the horizon—see [E&)}—one gets the Note that qualitatively similar trajectories in energy space
following threshold energy: can be found in the cask=N discussed in the previous
EX=- KTynN (K<N). (12) section as well as in the BMM. In this context, it has been

proposed17] to characterize the type of dynamics by com-
Below this level, the evolution is always activated: an energyputing the average enerd¥’)e reached in a transition be-
barrier at least equal tEf~E) has to be overcome when tween two different microscopic states, starting from a given

starting from an energig < EK energyE:
On the contrary, as long as the system visits states with 0
energy E well above E{f, the influence of the threshold dE’E’'W(E — E’)
should not be felt. So one can guess that two different dy- o
namical behaviors for temperatures above and belgi2 (ENe=—"=% (13
should still exist, as found also in the modified version of the f dE'W(E — E')

BMM including a threshold17]. As a result, one expects to
find schematically the three following regimésee also
Fig. 4).

(1) E>EKX, T<Ty4/2. This case resembles the entropic
regime of the BMM, the only difference being that the mag-
netization decorrelates slowly, typically by a factor 2u-1
(1-K/N) after each jump, at variance with the full decorre- (ENe=E+ 1- Ty-
lation usually assumed in the BMM. H

(2 E> Eh, T>Ty/2. Asin case 1, the dynamics is similar Below Ty4/2, the energy is lowered on average at each step,
to that of the BMM in this temperature range, activatedleading tO an irreversible drift toward low energies.
effects become important, and observables also decorrelate On the contrary, abov&,/2 the energy is raised on aver-
slowly. age, i.e.{E")e>E, as long a$E| is large enougliE<0). So

Using the Metropolis rules and assuming that the visited en-
ergies are still well above the horizon level, this quantity
reads in the largéE| limit

(14)
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E — . deterministic evolution and a fluctuating term with zero

0r ] mean and a finite amplitude. Even though fluctuations are
not necessarily small, they do not dominate the dynamics
and may be considered as a perturbation over the average
-20r ] deterministic evolution. So it may be reasonable to think that
a zeroth order approximation which would neglect fluctua-
tions could yield some relevant results, in particular concern-
-40 0 10° o ) ing the scaling behavior.

On the contrary, the dynamics for>T,/2 appears to be
dominated by activated events during which the system visits
high energy states. Fluctuations are now driving the evolu-
tion, and cannot be considered anymore as a perturbation
which could be ignored in a first step. Indeed, since the sys-
tem goes back frequently to superficial states at en&gy
~0, the amplitude of the fluctuationsvith respect to the
average energy at timg diverges with time. So scaling ar-
guments involving only average values cannot be used any-
-40 L : w more.

2. Entropic temperature range ¥ Ty/2

Let us first consider the case of zero temperature and es-
timate the aging law for magnetization through a simple scal-
ing argument. Given that the magnetization decorrelates typi-
cally by a factor (1-K/N) at each transition, one can
compute the correlatio@y after R jumps. Assuming< <N,
we have in the larg® limit

- L - . - CR% e—RKIN (15)

10 10 10" t

with the prescriptiorCg_g=1. From Eq.(14), we know that
FIG. 5. Energy as a function a time for a single thermal historyafter each jump, the energy decreases of an amoury oh

at three different temperatures: from top to bottd'ng:O.35, 0.5, average, so that aﬂﬂjumps the energy difference between
and 0.65(N=200 andK=5). Returns to high energy levels appear timest,, andt,+t is given by

only for T>Tg/2. At this temperature, the dynamics is rather simi-
lar to that of the BTM, wit_h in particular an apparent reversibility E(t, +1) - E(t,) ~ - RTg. (16)
when plotted on a linear time scgl21].

From an energetic point of view, the NPP far ab&gis
the energy variable performs a random walk in energy spac&XPected to be equivalent to the BMM. Subsequently, at an
with a bias toward high energies, and—roughly speaking—&NergyE the corresponding trapping time is given by
reflecting boundary condition &=0. If time was counted in . i
number of jumps, the random walk would then reach a o= J dE' p(E") 17)
steady state: energies tend to remain close to the boundary E= el | P
E=0, as seen on Fig. 5. However, the lar¢l, the larger
the sojourn time, so that large fluctuations away from theyherep(E’) is given by Eq(4) and ryc=K/N (see Sec. Il

boundary(i.e., at larggE|) dominate the real time dynamics. at low energy, this trapping time reduces to
So the probability to have enerdyat timet does not reach

any steady state, and drifts continuously toward low ener- BT
gies. This competition between the bias toward high energy 7(E) = TMC—QN— (18)
and the large trapping time of low energy leads to the onset

of a singularity in the correlation function as discussed . . o .
above 9 y whereN is a factor coming from the distributigs(E). Since

Since a full analytical solution of the correlation function the timet,+t is of th? (_)rder of the typical trapping tim_e of
in the present model with <N seems difficult to reach, the state currently visited, E¢18) leads to the following

simple scaling arguments can be helpful in order to interprefélation betweer, +t andE:
numerical simulations. Data shown on Fig. 5 suggest that the

—E/T,
type of scaling argumentor in other words, the relevant bt~ Eﬁqu' (19)
approximations may be different for entropic and activated v N N

dynamics. In the entropic range<Tgy/2, the instantaneous
energyE(t) can be decomposed into an average valith  This combined with Eqs(15) and(16) gives
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C(t .t +) o 1=10 K/N=10° precisely leads to the same behavior as&0) at zero tem-
T T ) W_ 0 _10° perature[28].
Lhex =1 © KiN=1 ” For nonzero but low enough temperatuile<T,/2), so
. o tw=10K/N K/N=4X12° that activated processes do not dominate the dynamics, one
— () KN=10 can use exactly the same argument, simply modifying the
K/N=4x10" time dependence of the average energy according to Eq.
(14):
1-2 1
Ety+1)~E(ty) ~- ——RT, u<-. (21)
1-u 2
= This gives
I:‘:‘n to+t —7KIN
0.1+ I:nn - C(tmtw + t) =~ (Wt_> (22)
[ 1 1 o ] ] W
0 20 40 60 . . . . . .
10 10 10 10 tt with =(1-wu)/(1-2u). Here again, this simple estimation
w

describes rather well the numerical simulatigkgy. 7).

So one sees that the law of decorrelation of the observable
between states, which is encoded in the r&itN, has a
dramatic impact on the corresponding aging laws. In particu-
lar, the specific behavior of the correlation function given by
Egs.(20) and(22) has important consequences regarding the
thermodynamic limitN — . According to the dependence of
K on N, the correlation function is able or not to decay at
large times. Indeed, K= aN with some positive constant,
C(t,,ty+1t) converges in the larghl limit to a well defined
scaling function which decays to 0 for- [see Eq.(20)].

) . ) On the contrary, ilK/N— 0 for N—o (sayK is fixed), the

for the aging correlation function at zero temperature. Al-gysiem becomes unable to decorrelate in the thermodynamic
though rather naive, this simple scaling argument is VeNfimit, and C(t,,,t,+t) remains equal to 1. Defining as the

well confirmed by long time simulations performed with an |, it \when N— o of the ratiok /N, and taking it as a control

efficient event-driven algorithm, as seen on Fig. 6. The,;ameter, one sees that a transition toward a state where
agreement with direct Monte Carlo simulations of NPP up toergodicity is broken occurs at=0.

accessible times is also very satisfact¢sge Fig. 7, lower
curve. Note that a modified version of the BMM which 3. Activated temperature range ¥ Ty/2
includes the property of slow decorrelation of the observable As already mentioned in the introduction of this section,

the dynamics in the temperature rangé2 <T <Tj is quali-

FIG. 6. Correlation functior©(t,,, t,,+t) up to very long time at
zero temperature and for small values of the r&tidN. Data were
obtained from an efficientevent-driven Monte Carlo algorithm;
the thermodynamic limitN— o is taken, so that the horizon level
Ef=—KTg4In N cannot be reached.

Clty bty +1) = (—W ) (20)
ty

C(t, .t +t) tatively different from that in the rang€< Ty/2: jumps to
- I I : I T high energies, inducing large energy fluctuations, play an
It " important role in the evolution of the system. In this case, a

scaling argument based only on the deterministic evolution
of average values is not expected to be relevant.

Let us consider first the dynamics of the energy. Since for
K> 1 the horizon IeveEﬁ is low, a significant energy range
aboveEﬁ exists where energy states are all mutually acces-
sible, independent, and exponentially distributed. Given the

0.8

K/N=0.025 dynamical rules Eq(5), the evolution of the energy is pre-
+ T=025T,  K/N=0.025 cisely that of the BMM; for instance, one should find the
n T=04T  K/N=0.025 same dynamic probability dIS.trIbutId?(E,t)—”I.e., the prob-
o T KN=01 ability to have energyE at time t. In addition, once the
0.61 7] threshold level is reached, a fully activated dynamics typical
- - X RE > o of the BTM should be recovered. So as far as the evolution
10 10 10 10 10 10

of the energy is concerned, the situation is very similar to the
BMM with threshold studied if17].

Turning to the correlation function of smooth observables,
tion in the rangeT <Ty/2, for small values oK/N. For T>0, N the situation is a bit more subtle. Numerical data from the
=200 andt,=10% for T=0, N=1000 andt,=500. It has been NPP model are shown on Fig. 8. At variance with the usual
checked that typical energies remain well above the horizon levelresults of the BMM, the long time tait>t,) of the corre-

Lines are predictions given by E(2); no fitting parameter is used. lation function seems to behave as a power law with a

FIG. 7. Direct Monte Carlo simulations of the correlation func-
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C(tw,tw+t) C(tw,tw+t)
T T ] 100 I T — — T -
10" 107 i

o T=07T. t=2x10"

- g w

2 s T=0.75T t=2x10"
g W

1071 5 10 q
o T=08T, t=2x10
. T=09T, t=10

-3 | . L . 1 . ! A ' -3 L

10 R N 10 " -
107 10" 10° 10’ 10° 10 10° 10°
t/tW t/tW
FIG. 8. Correlation function in the reginig,/2<T<T for the FIG. 9. Correlation function in the BMM with a decorrelation

NPP with 1<K <N. Straight lines have slope=T/T, on log-log  factor (1-x); here,x=0.1. From top to bottomT/T;=0.52, 0.55,
scales, so as to compare with the activated behavior of the BTM.0.6, 0.7, and 0.8. The long time tail becomes temperature depen-
dent, with an exponent close to the valuye found in the BTM, but

temperature-dependent exponent. Yet one must admit thg[sviatic_)ns increase wheh— Ty/2. Inset: short time behavior, with
these numerical data do not allow one to draw a definitiveé® tyPical exponentl—u)/u of the BMM (dashed
conclusion on this point.

Since the magnetization decorrelates only by a fattor C(ty,ty) = (O(t) O(ty)) (23)
-K/N) (with K<N) at each transition, the evolution of the
correlation should be that of the BMM with slow decorrela-
tion. Still, this model has not been studied in detail in the &O(t,))
literature, and one might wish to know whether the behavior Rty,ty) = i) |
of the correlation function resembles that of the hopping cor- (1) [heo
relation function in one of the usual trap mod28]. are related through a FDR

With this aim, we have simulated directly a modified ver-
sion of the BMM in which the observable is decorrelated Rtity) = — dC(ty,tp) (25)
only by a factor(1-x) at each transition, assuming<1. VT Tutnt)  aty
o oo ancoo & i o AL QDI Tl 1) G by e thrmal et

reminiscent of both the BTM and the BMM. The short time the system properties are time translational invariant. Far
behavior(t<t,) is very similar to that of the BMM: a sin- from equilibrium, these FDR'’s can be used to define a mean-

ularity 1-C~ (t/t,)? appears, with an exponent ver ingful gﬁective temperaturQSO—_?»a, as in the conte_xt of
glose i/o the va(luév{)—u)?z found for the hogpingnf:orre)lla— mean field(or fully connectegl spin-glass modelg33]. Since

. . : . we are indeed dealing here with a fully connected spin
tion function of the BMM. On the contrary,_the Iong time tail mlodel, it is then natural to study the FDR. An important
becomes temperature dependent, at variance with the usu

. . : . C?Uestion to address is the temporal independence of
I beavir g % L0, a1 in SGTEETEN WD Ty 1) Since ofly Wyt ) coes ot déperd on
sponding exponent is close to the expogriept typical of times can a unique and well-defined effective temperature be

activated regimes, but significant discrepancies appear for introduced. In this case, introducing the integrated response

and the response to a perturbativiconjugate toO,

(24)

close toT,/2. These discrepancies were somehow expected tp
from a continuity argument, since beldky/2 the correlation Xty tp) = f dt'R(t',t), (26)
function decays with a very small exponengk/ N. 4
the FDR is said to bdinear since thet,-parametric plot
V. FLUCTUATION-DISSIPATION RELATIONS x(t1,t2) vs C(ty,tp) is a straight line whose slope is given by
1/ T

Generalizing the well-known equilibrium theorems,
fluctuation-dissipation relations have proven to be a very ro-

bust tool to study the out-of-equilibrium regime of glassy A. FDR in the aging regime for K=N

models[29]. Given an observabl®, in most case$29,30, The temperaturdy/2 separates the two different classes
the two-point correlation function between tinte andt,  of dynamics encountered in this model. It is then of interest
>y, to compare the FDR’s in these two regimes. Numerical data
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x(t, .t 0 x(t, .t 0
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o T=0 o T=0.6 Tg K/N=0.1
1.2 ~o x T=0.5 Tg ] o T1=0.7 Tg K/N=0.03 |
Y a T=075T, — slope 1/T
— Analytical T=0
—. FDT, T=075 T 0.8 -
O. 8 | AAAAAA\\ g _|
0.4- i 0.4F _
AAZ%A
0 . ! . ! . ! . ! L 0 . ! . ! . ! .
0 0.2 04 0.6 0.8 1 04 0.6 0.8 1

C(tw,tw+t) C(tw,tw+t)
FIG. 10. Fluctuation-dissipation relations in the NPP KorN FIG. 11. FDR forT>Ty/2 in the aging regime of the NPP, for

=50 for different temperature®,,=10%; x is measured in units of 1<K <N: a linear relation with slopd™! is observed. Simulation

Ty Numerical data aT=Ty/2 remain very close to the zero tem- parametersN=1000 andt,,= 10° for T=0.6T5; N=100 andt,=2

perature analytical relation of the BMNull line). For T>Ty/2, X 10° for T=0.7T,.

the initial slope is given by 1T (dashed ling

concerning the FDR for the global dynami¢K=N) are
shown on Fig. 10, in the case<T,/2.

As the NPP model with a global dynamics can be mappeqereh is a small external field that is switched on at time

onto the BMM, one expects to recover the exact result founq “his field h is coupled to the spins via a linear coupling
in the BMM at zero temperatuf@4]—see alsq35]—which o V,, in the energy, also involving;:
il I

N
Mttt 0= S &S0, 120, (29
i=1

reads
N
En=E+Vh Vh=-h2 és. (30
2 IC(tyty + 1) i=1
Rl tw 1) = Ty at ' @7 Above Ty4/2, the FDR significantly depends oh but

seems to have unchanged behavior in the two following lim-
its: t<t,, andt>t,, (Fig. 10. In the former, the slope of the
R(t,+t,t,) being the response associated with the autocorresurveC vs R is T~* (as in equilibrium) whereas in the latter,
lation function C(t,,t,+t). In terms of the integrated re- the slope apparently goes to 0, which might be interpreted as
sponse, this FDR can be reformulated as an infinite effective temperature. Yet, such a temperature
must be taken with care since the definition of effective tem-
peratures from the local slope of a nonlinear FDR remains an
1 unclear procedure.
Xty +1) = —[1 = C(t,,t, +1)?], (298 Apart from this question of effective temperature, it is
Ty quite interesting to see that one can discriminate between an
entropic regime and an activated one in the BMM at finite
L - . .__temperature, from the initial slope of the FDR. The entropic
taking into apcount the explicit expression of'the correlatlonregime gives aT-independent slope corresponding to the
[34]. Numerical data shown on Fig. 10 are in good adre€emperaturd /2 that separates the two regimes, whereas the

ment with this analytical prediction. Interestingly, this zero 5y ated regime gives a slope that corresponds to the ther-
temperature solution seems to be also valid for any temperga o path temperaturg

ture in the “entropic rangeT <T,/2 (Fig. 10. As a result,
belowT,/2, the FDR remaingionlinear

From a technical viewpoint, the autocorrelati®) is as-
sociated with the observabRfl&s(t), where{¢} is a set of Let us consider now the intermediate dynamicsK
quenched independent random variables that can take theN. In the casel >T,/2, one recovers whel/N— 0 the
values *1. It is understood that all measured quantities arsame behavior as fd¢=1 [21], namely, a linear FDR with a
averaged over the realizations {#}. So the integrated re- slope equal to IV, whereT is the heat bath temperature.
sponsex(t,,t,*1) is numerically obtained in the NPP model Thus there is no violation of fluctuation-dissipation theorem,
by computing as seen on Fig. 11. The mechanisms at play are essentially

B. Out-of-equilibrium FDR for K<N
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x(t,t, 0 plified picture of the physical mechanisms leading to this
22— T . , . , . , " nontrivial effective temperature by considering the case of
a T=0 K/N=0.1 (MO)| | magnetization.
« T=045T, K/N=0.05 (MC) As seen in the casé=1[21], a key to the linearity of the
L6 N -- T=0 K/N=0.005 (ED) [ FDR is the fact that the magnetization induced by the field
L \\ - Slope 2/T, 1 is not influenced by the state in which the system was at time
121 _ ty, When the field was switched on. In other words, the con-
tribution to the magnetization of this initial state should be
negligible. This is indeed the case here, since the contribu-
0.8 . tion is expected to be of the order Kh, whereas the total
magnetization should scale & So in the limitK/N— 0,
the above contribution vanishes. Notice that this property
0.4 7] does not hold for the BMM(K=N) since the initial state
contribution is expected to be of the order Mh. Subse-
0 . | . | . | . ! . quently, this case is not expected to give a linear FDT in
0 0.2 0.4 0.6 0.8 1 agreement with the established res(i84] [see Eq(27)].

C(t, .t +t) Once this contribution is neglected, the linearity of the
FDR can be given through a rather simple physical interpre-
FIG. 12. FDR in the entropic temperature rafige T,/2 inthe  tation. It simply means that the relaxation toward the non-
NPP with 1<K<N. Data were obtained by direct Monte Carlo zero magnetization induced by the fiefdbehaves in the
simulations(MC) or by the event-driven algorithi(ED); t,,=10° same way as the relaxation toward zero starting from an
for MC and 18° for ED. Data converge to a linear FDR in the limit arbitrary magnetization induced by the spontaneous fluctua-
K/N—0 (andt,— =), with a slope 2T;. Thus in the regime the tions. So the slope of the FDR is determined by the
effective temperature is equal TQ/2. asymptotic value of the magnetization, a long time after the
field was applied. FoK=1, the visits to superficial states
the same as for the activated dynamics found wkerd (see  induce asymptotically a constant magnetizatidr, since
[21]) so that this case need not necessarily be discussed the a priori distribution
detail. Note that although simple trap models usually do not
display linear FDR’s[34—-3§, such linear relations with
slope 17T as in equilibrium can indeed be found in trap p(M) =
models(at least for some particular observablesce the
spatial structure is taken into accoUyt]. ) . T
On the contrary, the behavior of the systemTer T,/2is IS weighted by the Boltzmann factef"'™; the average value
much more surprising. Indeed, #&§N— 0, numerical data of the resulting dls_trlbutlon is them*: hN/T. On the ot_her
on the zero temperature FDR converge to a linear relatioRand, thezequal-tlme correlatiofin the absence of fiejd
with slope 27T,. Results for different values ok/N and ~ C(t,)=(M%/Nis equal to 1; hence the slopeTLof the
different temperatures beloWy/2 are gathered in Fig. 12. As FDR [21]. One can expect this argument to be valid also in
mentioned above, the limit of linear FDR allows us to definethe regimeT>Ty/2 for 1<K<N, thus accounting for the
an effective temperature, which would be equal hergg@  slope 17 found on Fig. 11.
and is thus temperature independent. So it appears that this Turning to the cas@ <T,/2, the asymptotic magnetiza-
transition temperature between activated and entropic dytion can be computed from the following argument. Given
namics again plays an important role in the description of théhe current state characterized ByandM, one can compute
low temperature phase. It is also worth noticing that the inithe probability that the magnetization takes the valié
tial slopes(i.e., for C=1) of the nonlinear FDR’s found for after one transition, in the large limit [see Eqs(A6) and
the global dynamic& =N are the same as the slopes of the(A16)] in the Appendix. This distribution is Gaussian and
linear FDR’s in the case <K <N. independent oE; its average valu®&’ can be identified with
Here again, in this regim&<Tgy/2, the NPP model pre- the most probable value:
sents strong similarities with the BMM modified to include
slow decorrelation, as discussed in Sec. IV B 2. Indeed, it _ K M2\ h
can be shown that this particular version of the BMM, with a M’ = (1 - —) M + 2K<1 - —2>—. (32
vanishing decorrelation of the observable at each transition, N=/T,
also leads to a linear FDR with a slofig/ 2 [28].

5 Ne—M2/2N (31)
V£

9

The asymptotic magnetization can be computed self-

consistently by looking for the fixed poitM’ =M. Keeping
only the first order inh, one can safely neglect the term

Interestingly, this linear FDR with slope Z4 can be de- M?/N?, since one expect/ ~Nh. Solving the resulting
rived analytically in the whole regim&<T,/2 for smooth  equation and denoting the solution B, one findsM*
observables. The corresponding calculations are reported m2Nh/Tg. So, as here agai@(t,t)=1, the slope of the FDR
the Appendix. In this section, we simply try to give a sim- is expected to be Zj,.

C. Interpretation of the linear FDR
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So without entering into the details of the calculationsmerical simulations were difficult due to the large value of
developed in the Appendix, this simple argument already aI{Em.
lows us to get an intuitive idea of the physical mechanisms The former transition is controlled by the rafic=T/ T, of
responsible for the linearity of the FDR, and for the effectivethe temperaturel’ and the characteristic enerdy, of the
temperaturely/2. exponential density of statggE). On the contrary, the latter
is due to the lack of direct paths between states lying below
the horizon level: the system has to reemerge first above the
horizon; hence the onset of activated dynamics. So in the
A. Effective temperature present model, different mechanisms are responsible for
these two types of transitions.

Yet the first mechanism, which is related to the shape of
Re energy distribution, could also lead to a crossover as a
function of time, for a given temperature. With this aim, one
needs to consider a distributign{ E) which is not purely
exponential. For instance(E) could be composed of a first

. ®
exponential parp(E)*e¥Ts" for E* <E<0, and a second

@ )
JE (33)  onep(E)xe¥Tg" for E<E*. Assuming Téz)/2<T<T(gl)/2,
one then observes an entropic dynamics as long(gsre-

by associating Ip(E) with the complexity(or configura-  mains well aboveE*, and an activated one in the long time
tional entropy of the system. On the other hand, similar regime wherE(t) is below E*.
results have been found in a recent study of the random Note that assuming on the contraF ) <T@ one finds a

orthogonal modelROM) [40], & spin-glass model with a temperature rang&./2<T<T?/2 such that the activated

one-step replica symmetry breaking solution. Although the = ™~ = .
results gn trFl)e ROK//I Wereynot cons%ered along the Iignes O[eglme 'S founcbetgorethe entropic one as the system ages

the entropic-to-activated transition, we believe that it would at constant temperatl)r_ewhlch is rather counterintuitive.
Clearly, this example using an energy density with two dif-

be of great interest to search for such a transition in thI%erent exponential parts is a bit artificial, but it is interesting

model. To support this view, exponential tails proportional tofor edadoaical burnoses. A more natural example would be
exp(—Q/\) in the distribution of heat exchang€shave been pedagogical purposes. A mors | P
for instance a Gaussian distribution:

found in the ROM[40]. This suggests the existence of an

underlying exponential distribution of energy levels with a 1 b

tail p(E) = ?E_E 128, (35)
N2m

p(E) c e E— —oo, (34)

VI. DISCUSSION

The effective temperaturg,/2 is very interesting for sev-
eral reasons. On the one hand, it is surprising to see that th{
value is different from the usually expected vallig=T,
which follows from mean field spin-glass mod€&8] and
from Edwards-like argumen{89]. To be more specific, one
may expect from these theories a value

dlnp
-1_
Teff_

) ) ) The steady-state distribution at temperatufe P(E)
An interpretation _basgd on a scenario of sporjtaneous ar[gp(E)e—E/T' is also a Gaussian shifted toward low energies,
stimulated relaxation in glassy systern#l], confirmed by with average vaIueEst:—Eng and the same variandég.

numerical measurements of the FDR's in the RQM,  agsuming that we are in the low temperature regifreE,,

yields an effective temperatuiq related tor throughTer e hagEg{ > E,. After a quench from high temperature to a
=\/2. In other words, the relation between the effective tem- —

perature and the slope of the exponential distribution is thdow temperatureT, the mean valug(t) is expected to d,”ft
same as in the NPP with<K<N. This suggests that the Slowly toward the steady-state vallg; during the aging
mechanisms at play in the NPP should be rather generic, di¢9ime, while the variance remains essentially constant.
condition that energy levels are exponentially distributed WhenE(t) becomes close tBs—say E(t) = Eq/2—one can
However, this latter condition should not be so restrictive jinearize p(E) aroundE(t), to find locally an exponential
since exponential distributions are expected for low lyinggistribution:
energy states on the basis of extreme stati$fies

P(E,t) o &MV (36)
B Influenf:e of the e”er?’y dIStl’Ibutlon. _ with A(t)=E3/|E(1)|. This exponential approximation is valid
As already mentioned, two kinds of transitions b.etweenas long asE—E(t)| <E3/T. In particular, if E-E(t)| =T, this
entropic and activated dynamics have to be distinguished in imation is fully iustified. It is then natural to defin
this model. On the one hand, a transition can be found as %pg)roxgnanon 'St u }(”_u_ls_/')\'et : h'S h el afha 0 de T a
function of temperature when crossing the valyg2. We e uc.e parame e;z( )=T) ()j whic pay§ .e same role
have studied this transition in detail within the NPP model.as x in the BMM. Since|E(t)| increases with time, so does
On the other hand, a crossover between the two dynamicsg(t); equilibrium is reached fop=1. Whenu(t) reaches the
also appears, at fixed temperature, when the energy of thmlue%, one expects a crossover from an entropic dynamics
system reaches the horizon levef. Here the regime to an activated one.
changes as a function of time rather than temperature. We did This behavior should hold more generally for any distri-

not study this phenomenon in detail within the NPP, as nubution p(E) of the form
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VII. CONCLUSION APPENDIX: ANALYTICAL DEVELOPMENTS ON FDR

In this paper, we have established the dynamic phase dia- In this appendix, we shall show, in the context of a modi-
gram of the NPP model as a function of temperature and ofied BMM, how a well-defined effective temperatufg/ 2
the numberK of spins allowed to flip simultaneously. The emerges for slow decaying observables. To this end, we first
first result is that some particular dynamical rules lead to thetudy the observable “magnetizatio¥1) for a system mi-
behaviors found in both usual trap models: the cisel  croscopically composed & spins and for whiclK spins at
yields the activated trap model proposed by Bouchaudmost can be flipped. Subsequently, magnetization is indepen-
whereas the model witK=N can be mapped onto the en- dent of the energy and the energy evolution is the one given
tropic version studied by Barrat and Mézard. The formerpy the BMM endowed with Metropolis dynamid§). We
case has already been studied ], but was recalled here study the FDR folT <T,/2, taking the limits in the follow-
for the sake of completeness. ing order:N—, h—0, andK — . Then, in the same lim-

In the intermediate range<dK <N, the dynamics of the its, we generalize the results to the general case of smooth

energy remains essentially the same as KerN, i.e., of  observables that decorrelate by a fadtbrK/N).
BMM type, within the time window accessible with numeri-

cal simulations. For longer time scales, a horizon le&gl FDR for the magnetization
=-KTyIn N is expected to yield a crossover to an activated
regime, since states beloBf behave as isolated traps. Yet, Zero temperature case

the major difference with usual trap models is the presence e begin by studying the problem when temperature van-

of slow decorrelation of the observables: at each elementanghes, choosing the magnetization as temooth observ-

transition between states, the magnetization decorrelategle. To derive the wished FDR, we need the relation be-

typically by a factor(1-K/N), whereas full decorrelation in tween the magnetizatiorM before a jump and the

a single transition is assumed for usual trap models. So theagnetizatiorM’ after it. The system is assumed to be at an

NPP can be mapped onto a modified version of the BMMenergyE, in the presence of an external fieid

which includes a slow decorrelation of the observable. If K spins are chosen to be flipped with probabiﬁtychen
This extra property has important consequences. On thg/2 spins are flipped on average. Assuming tkds large,

one hand, in the entropic low temperature ph@iseTy/2,  flyctuations around this valué/2 can be neglected, and the

the correlation function decays only s, +1)/t,]” 7N, with  effective dynamical rule is that/2 spins chosen at random

7=(1-p)/(1-2u) and u=T/Ty i.e., much more slowly are flipped(the new configuration found in this way is then

than the hopping correlation function. Indeed, in the thermo-accepted or rejected according to the Metropolis)radéven

dynamic limitN— o, an ergodicity breaking occutthe cor-  a magnetizatioM, the probability for a spin to be in the up

relation function does not decay to @f K is such that state is given by

K/N—0. Actually, forN— oo, the correlation decays to 0 at

large time only ifK = aN, with «>0. On the other hand, in Py = 1 + M_ (A1)

the temperature randg,/2<T<T,, the short time behavior MT2 2N

of the correlation is precisely that of the usual BMM, with

the onset of a singularity abovg,/2, but the long time

(power law tail becomes temperature dependent, with an K/2

exponent close to that of the BTM. This result suggests that P(L) = ( L )pkll(l -pw)e (A2)

thermal activation may be in that case the only relevant

mechanism to decorrelate the observables, contrary to the the limit 1<K <N, using the Gaussian limit of Bernoulli

activated phase of the BMM in which both thermal activa-processes, one finds for the new magnetizatibnat each

The probability to flip a numbek <K/2 of up spins reads

tion and entropic slowing down control the system. Monte Carlo step the following probability distribution:

In addition, we have studied the fluctuation-dissipation ) )
relation in the NPP model. In the limK <N, the FDR be- pc(M7[M) = 1 ex;{— (M’ = (1 -KIN)M) )
comes linear, and its slope depends on the temperature range \2may 2apy

considered. FoiT>T,/2, the slope is equal td !, as in (A3)
equilibrium and similarly to the cag€=1. On the contrary,

for T<T4/2, the slope is temperature independent and isvith ay,=8Kpy(1-py). Taking into account the zero tem-
equal to 2T, Thus the effective temperature in this low perature acceptance rate, the distribution of magnetization
temperature phase T§/2. P(M'|E,M) after a transition is given by
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, pc(M'|M) distribution in the presence df, combined with these very
P(M'[E,M) “TEMN limits, leads to
KM(t,, + 1))y 2 5
X fdE’P(E,)®(E—hM_(E’—hM,)) Jh h=O_T_g[<M(tW+t) Yo~ (M(ty, + )M(t,))o].-
(Ad) (A10)
where©(.) is the Heaviside function, anB(E, M, h) is the ~Making the following identifications:
normalization factor which can be interpreted as the escape 1 KM(t,+ 1)
rate from the stat¢E,M}: Xty +t)=— ————| (A11)
N ah h=0
F(E,M,h):fdM’pK(M’|M) 1
C(tW1tW + t) = N(M(tw + t)M(tW)>01 (A12)
X JdE'P(E')@(E‘ hM - (E" —hM")). we get the expected FDR, using al&é,,,t,)=1:
A5 2
( ) X(thtW+ t) = _[1 - C(tw-tw+ t)] (A13)
One can then compute explicitly the distribution Ty
P(M’[E,M): Note that the order of the limits does not restrict so much the
1 validity domain of such a relation. Indeed, we have seen that
P(M'|E,M) = —— K does not need to be very large to get a long BMM regime.
\2may And, for finite K, the same relation as E@gA13) can be
' _ 2 exactly derived42]. The reason we have chosen to present
X exp(— (M’ - (1 ~KIN)M = a Bgh) ) the largeK solution lies in the simplicity of the relations
2ay between magnetization before and after a jump. In this case,

(AB) it should be noticed also that this FDR is only valid for

smooth observables with zero mean value at any time. Such
rescriptions on the observables are very similar to the ones
ieeded to have a unique asymptotic FDR in the B[R4].

which, interestingly, appears to bhedependenbf the energy

E. This results in a decoupling between energy and magn
tization. Note that apart from the normalization factor, the
above calculation essentially amounts to multiplying the o
priori distribution p(M’|M) by a factor expszh(M’—M)]. Finite temperature

Given this distribution, we can recursively compute the mag- We shall see how to extend EGA13) to nonzero tem-
netization of the system aftd® jumps. Assuming that the peratures. In this case, EA3) is still valid, whereas rela-
magnetization isM,, at timet,, when the fieldh is applied, tion (A5) is modified due to the Metropolis rates. The distri-
and Mg, after R jumps, one obtains the following relations:  bution Pr(M’|E,M) now reads

(MgM,,)0=aXM2),, (A7) 1 E-h(M-M") ,
RVIw/0 w/0 PT(M,|E1M)ZMPK(M,|M) f dEreBgE
T 1 —0o0
<MR>h = aR<MW>O + ZIBCNh(l - aR) (A8) 0
with a=1-K/N. The subscript 0 indicates that the average is + f , dE’e‘B[E/‘hM/‘(E‘hM)]eBgE/)
taken without any external field. Since there is no spontane- E-h(M-M")
ous magnetization, one h@d,),=0. In this case, and in this (A14)

caseonly, one finds using alséM,)o=N wherel(E, M) is the escape rate at temperatiirand with

- 2\ _ field h, defined by normalizing?(M’|E,M). Performing the
(M= 2B50((Mido = (MeMu)o)- (A9) change of variables=E’-h(M’-M) in the integrals, one
Strictly speaking, this relation is not the FDR since the paragets
metric variable involved is the numb& of jumps. In order ,
to convert Eq.(A9) into a relation involving timeg,, and Pr(M'|E,M) = px(M'[M) Sh(M'-M)

t,+t, we need to average it with the distribution of time F?(E,M)

intervalst given the numbeR of jumps. Let us consider this E (M =M)

distribution in the presence of a small field At leading X (f dx eegx+f dx e—ﬁ(x—E)+ﬁgx).
order inh, it is the sum of the zero field distribution and of —o E

terms proportional t&h (we do not write the exact distribu- (A15)

tion here for the sake of simplicity We then see that the
limits have to be taken in the following ordeN—~, h  As a result, the dependence b(M’'-M) is essentially fac-
—0, K—o. Thus, the average of EgA9) with that time  torized, apart from the upper bound of the second integral. In
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the regimeT > Tg/2, this bound must play an important role, , K
since the system quite often visits the high energy states. On A= (1 - N>A+ LA (A18)
the contrary, in the opposite temperature range Ty/2,
these superficial states are no longer visited in the long timé, is a Gaussian white noise whose amplitude is imposed
regime, so that one can neglect the influence of this uppesoth by the conservation of variance #f that is, (A'%)
bound and safely replace it by O sinfd’-M|~\K andh  =(A?, and by the correlation given in EgA17). Thus, at
tends to 0 at finiteK. Within this approximation, the distri- leading order inK/N, one can show that the variance &f
bution P+(M’|E,M) is again computed by multiplying does not depend on the current valde The variance is
p(M’|M) by the exponential factor ekf:h(M’'-=M)], pre-  given by
cisely as in the zero temperature case.

Thus, forany temperature lower thafy/2, the condi- <§2>:2—K<A2) _ (A19)
tional distribution of magnetization after a transition is at AN 0

large time the same as in the zero temperature case: . .
9 P Notice that we have implicitly chosen the case of observ-

P+(M'|E,M) =P(M’'|E,M). (Al16)  ables that are not correlated with the energy, since we as-
. , sumed that/, does not depend on the energy.
Since moreovePr(M'|E,M) does not depend of, the Then, we can see that E¢A18) can be written as Eq.

derivation of the FDR is exactly the same as in the ZIQA3) with ey = 2K(A2)/N. Thus, Eqs(A7) and(A8) become
temperature case. This shows that an effective temperature '

equal to Ty/2 is expected in all the entropic reginie (ArAW o = aX(A2),, (A20)
<T,/2.
9

(An=aR(Ao+ 2B(A)(1 -a%).  (A21)

The end of the calculation is precisely the same as for the
magnetization.

To conclude, this analysis shows that a generic smooth
observable is expected to satisfy a linear FDR with an effec-
tive temperaturd’y/2 whenT <T,/2. Moreover, we believe

K that the stochastic ruleA18) is not an unavoidable ingredi-
(A'A)o = (1 - N)(A%. (A17)  entfor the emergence of the effective temperature. Indeed, as
we already mentioned, it can be shown that magnetization
A natural stochastic evolution rule for such an observable isatisfiegA13) even in the finiteK case for which the Gauss-
the following: ian law (A3) does not apply42].

Generalization to other smooth observables

More generally, one can consider observahlésthat
decorrelate by a factofl -K/N) at each transition. In this
case, we have the following relation between the valuzf
the observable before a jump and the valdeafter:
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